Existence results for unilateral contact problem with friction of thermo-electro-elasticity

被引:0
作者
H. Benaissa
El-H. Essoufi
R. Fakhar
机构
[1] Informatique et Sciences de l’Ingénieur (MISI),Laboratoire de Recherche en Mathématique
[2] Université Hassan 1,Laboratoire de Science des Matériaux, des Milieux et de la Modélisation (LS3M)
来源
Applied Mathematics and Mechanics | 2015年 / 36卷
关键词
static frictional contact; thermo-piezoelectric material; Signorini’s condition; Tresca’s friction; frictional heat generation; variational inequality; fixed point process; O29; O343.6; 35J85; 47J20; 49J40; 74F15; 74G30; 74M10; 74M15; 74S05;
D O I
暂无
中图分类号
学科分类号
摘要
This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini’s conditions and Tresca’s friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is derived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.
引用
收藏
页码:911 / 926
页数:15
相关论文
共 19 条
[1]  
Essoufi E.-H.(2010)Analysis and numerical approximation of an electroelastic frictional contact problem Advances in Applied Mathematics and Mechanics 2 355-378
[2]  
Benkhira E.-H.(2009)Weak solvability of a piezoelectric contact problem European Journal of Applied Mathematics 20 145-167
[3]  
Fakhar R.(2006)Generalized thermo-piezoelectric problems with temperature-dependent properties International Journal of Solids and Structures 43 6347-6358
[4]  
Mig´orski S.(2008)A class of hemivariational inequality for electroelastic contact problems with slip dependent friction Discrete Continuous Dynamical Systems-Series S 1 117-126
[5]  
Ochal A.(1978)Some general theorems of thermo-piezoelectricity Journal of Thermal Stresses 1 171-182
[6]  
Sofonea M.(1988)A generalized linear thermoelasticity theory for piezoelectric media Acta Mechanica 71 39-49
[7]  
Aouadi M.(1971)On the non-linear equations of thermoelectroelasticity International Journal of Engineering Scierce 9 587-604
[8]  
Migórski S.(2009)Modeling and analysis of the unilateral contact of a piezoelectric body with a conductive support Journal of Mathematical Analysis and Applications 358 110-124
[9]  
Nowacki W.(2007)A frictional contact problem for an electro-viscoelastic body Electronic Journal of Differential Equations 2007 1-16
[10]  
Chandrasekharaiah D. S.(2004)A piezoelectric contact problem with slip dependent coefficient of friction Mathematical Modelling and Analysis 9 229-242