Enabling ultra-low-voltage switching in BaTiO3

被引:0
作者
Y. Jiang
E. Parsonnet
A. Qualls
W. Zhao
S. Susarla
D. Pesquera
A. Dasgupta
M. Acharya
H. Zhang
T. Gosavi
C.-C. Lin
D. E. Nikonov
H. Li
I. A. Young
R. Ramesh
L. W. Martin
机构
[1] University of California,Department of Materials Science and Engineering
[2] Lawrence Berkeley National Laboratory,Materials Sciences Division
[3] University of California,Department of Physics
[4] Lawrence Berkeley National Laboratory,National Center for Electron Microscopy, Molecular Foundry
[5] CSIC and BIST,Catalan Institute of Nanoscience and Nanotechnology
[6] Intel Corporation,Components Research
来源
Nature Materials | 2022年 / 21卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single crystals of BaTiO3 exhibit small switching fields and energies, but thin-film performance is considerably worse, thus precluding their use in next-generation devices. Here, we demonstrate high-quality BaTiO3 thin films with nearly bulk-like properties. Thickness scaling provides access to the coercive voltages (<100 mV) and fields (<10 kV cm−1) required for future applications and results in a switching energy of <2 J cm−3 (corresponding to <2 aJ per bit in a 10 × 10 × 10 nm3 device). While reduction in film thickness reduces coercive voltage, it does so at the expense of remanent polarization. Depolarization fields impact polar state stability in thicker films but fortunately suppress the coercive field, thus driving a deviation from Janovec–Kay–Dunn scaling and enabling a constant coercive field for films <150 nm in thickness. Switching studies reveal fast speeds (switching times of ~2 ns for 25-nm-thick films with 5-µm-diameter capacitors) and a pathway to subnanosecond switching. Finally, integration of BaTiO3 thin films onto silicon substrates is shown. We also discuss what remains to be demonstrated to enable the use of these materials for next-generation devices.
引用
收藏
页码:779 / 785
页数:6
相关论文
共 125 条
[1]  
Moore GE(1965)Cramming more components onto integrated circuits Electronics 38 114-117
[2]  
Meindl JD(2001)Limits on silicon nanoelectronics for terascale integration Science 293 2044-2049
[3]  
Chen Q(1974)Design of ion-implanted MOSFET’s with very small physical dimensions IEEE J. Solid-State Circuits 9 256-268
[4]  
Davis JA(2015)Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits IEEE J. Explor. Solid-State Comput. Devices Circuits 1 3-11
[5]  
Dennard RH(2018)Beyond CMOS computing with spin and polarization Nat. Phys. 14 338-343
[6]  
Nikonov DE(2020)The past, the present, and the future of ferroelectric memories IEEE Trans. Electron Devices 67 1434-1443
[7]  
Young IA(2020)The future of ferroelectric field-effect transistor technology Nat. Electron. 3 588-597
[8]  
Manipatruni S(2008)Use of negative capacitance to provide voltage amplification for low power nanoscale devices Nano Lett. 8 405-410
[9]  
Nikonov DE(2019)Ferroelectric negative capacitance Nat. Rev. Mater. 4 243-256
[10]  
Young IA(2004)Enhancement of ferroelectricity in strained BaTiO Science 306 1005-1009