共 4 条
- [1] Normalized solutions for a Choquard equation with exponential growth in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{2}$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2023, 74 (3)
- [2] Normalized solutions for a biharmonic Choquard equation with exponential critical growth in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2024, 75 (2)
- [3] A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R^{N}}$$\end{document} Nonlinear Differential Equations and Applications NoDEA, 2016, 23 (2)
- [4] Multiplicity of solutions for a class of fractional p(x,⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x,\cdot )$\end{document}-Kirchhoff-type problems without the Ambrosetti–Rabinowitz condition Boundary Value Problems, 2020 (1)