Multiplicity and concentration of solutions for a Choquard equation with critical exponential growth in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}

被引:0
|
作者
Shengbing Deng
Xingliang Tian
Sihui Xiong
机构
[1] Southwest University,School of Mathematics and Statistics
关键词
Ljusternik–Schnirelmann theory; Trudinger–Moser inequality; Choquard nonlinearity; Multiplicity of solutions; 35J20; 35J62; 35B33;
D O I
10.1007/s00030-023-00916-1
中图分类号
学科分类号
摘要
In this paper, we consider the following Choquard equation -εNΔNu+V(x)|u|N-2u=εμ-NIμ∗F(u)f(u)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\varepsilon ^{N}\Delta _{N}u+V(x)|u|^{N-2}u=\varepsilon ^{\mu -N}\left( I_\mu *F(u)\right) f(u) \quad {\text{ in }\quad \mathbb {R}^N}, \end{aligned}$$\end{document}where N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}, Iμ=|x|-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\mu =|x|^{-\mu }$$\end{document} with 0<μ<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\mu <N$$\end{document}, ΔNu=div(|∇u|N-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{N}u=\textrm{div}(|\nabla u|^{N-2}\nabla u)$$\end{document} denotes the N-Laplacian operator, V(x) is a continuous real function on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}, F(s) is the primitive of f(s) and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is a positive parameter. Assuming that the nonlinearity f(s) has critical exponential growth in the sense of Trudinger–Moser inequality, we establish the existence, multiplicity and concentration of solutions by variational methods and Ljusternik–Schnirelmann theory, which extends the works of Alves and Figueiredo (J Differ Equ 246:1288–1311, 2009) to the problem with Choquard nonlinearity, Alves et al. (J Differ Equ 261:1933–1972, 2016) to higher dimension.
引用
收藏
相关论文
共 4 条