On Some Spectral Properties of Pseudo-differential Operators on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}

被引:0
作者
Juan Pablo Velasquez-Rodriguez
机构
[1] Universidad del Valle,Department of Mathematics
关键词
Spectral theory; Pseudo-differential operators; Riesz operators; Operator ideals; Gershgorin theory; Fourier analysis; Primary 58J40; Secondary 47A10;
D O I
10.1007/s00041-019-09680-2
中图分类号
学科分类号
摘要
In this paper we use Riesz spectral Theory and Gershgorin Theory to obtain explicit information concerning the spectrum of pseudo-differential operators defined on the unit circle T:=R/2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T} := \mathbb {R}/ 2 \pi \mathbb { Z}$$\end{document}. For symbols in the Hörmander class S1,0m(T×Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^m_{1 , 0} (\mathbb {T}\times \mathbb {Z})$$\end{document}, we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is a Riesz operator in Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p (\mathbb {T})$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p < \infty $$\end{document}, extending in this way compact operators characterisation in Molahajloo (Pseudo-Differ Oper Anal Appl Comput 213:25–29, 2011) and Ghoberg’s lemma in Molahajloo and Wong (J Pseudo-Differ Oper Appl 1(2):183–205, 2011) to Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p (\mathbb {T})$$\end{document}. We provide an example of a non-compact Riesz pseudo-differential operator in Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p (\mathbb {T})$$\end{document}, 1<p<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2$$\end{document}. Also, for pseudo-differential operators with symbol satisfying some integrability condition, it is defined its associated matrix in terms of the Fourier coefficients of the symbol, and this matrix is used to give necessary and sufficient conditions for L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-boundedness without assuming any regularity on the symbol, and to locate the spectrum of some operators.
引用
收藏
页码:2703 / 2732
页数:29
相关论文
共 32 条
  • [1] Agranovich MS(1979)Spectral properties of elliptic pseudodifferential operators on a closed curve Funct. Anal. Appl. 13 279-281
  • [2] Aleksić J(2014)Spectrum localizations for matrix operators on lp spaces Appl. Math. Comput. 249 541-553
  • [3] Kostić V(2017)Hölder-Besov boundedness for periodic pseudo-differential operators J. Pseudo-Differ. Oper. Appl. 8 13-34
  • [4] Žigić M(1971)A characterization of matrix operators on l2 Math. Z. 123 315-317
  • [5] Cardona D(2014)Kernel and symbol criteria for schatten classes and r-nuclearity on compact manifolds Comptes Rendus Math. 352 779-784
  • [6] Crone L(2017)-bounds for pseudo-differential operators on compact lie groups J. Inst. Math. Jussieu 38 158-172
  • [7] Delgado J(2015)Geometry and physics of pseudodifferential operators on manifolds Il Nuovo Cimento C 143 7-17
  • [8] Ruzhansky M(1991)Spectral properties of diagonally dominant infinite matrices II. Linear Algebr. Appl. 7 237-247
  • [9] Delgado J(2016)A study on pseudo-differential operators on J. Pseudo-Differ. Oper. Appl. 8 191-201
  • [10] Ruzhansky M(2017) and J. Pseudo-Differ. Oper. Appl. 138 675-686