Solutions of Complex Fermat-Type Partial Difference and Differential-Difference Equations

被引:1
作者
Ling Xu
Tingbin Cao
机构
[1] Nanchang University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Several complex variables; meromorphic functions; Fermat-type equations; Nevanlinna theory; partial differential-difference equations; Primary 39A45; Secondary 32H30; 39A14; 35A20;
D O I
暂无
中图分类号
学科分类号
摘要
The functional equation fm+gm=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{m}+g^{m}=1$$\end{document} can be regarded as the Fermat-type equations over function fields. In this paper, we investigate the entire and meromorphic solutions of the Fermat-type functional equations such as partial differential-difference equation ∂f(z1,z2)∂z1n+fm(z1+c1,z2+c2)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{\partial f(z_{1}, z_{2})}{\partial z_{1}}\right) ^{n}+f^{m}(z_{1}+c_{1}, z_{2}+c_{2})=1$$\end{document} in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{2}$$\end{document} and partial difference equation fm(z1,…,zn)+fm(z1+c1,…,zn+cn)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{m}(z_{1}, \ldots , z_{n})+f^{m}(z_{1}+c_{1}, \ldots , z_{n}+c_{n})=1$$\end{document} in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{n}$$\end{document} by making use of Nevanlinna theory for meromorphic functions in several complex variables.
引用
收藏
相关论文
共 35 条
  • [1] Cao TB(2016)A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables J. Math. Anal. Appl. 444 1114-1132
  • [2] Korhonen RJ(2009)Estimates for the zeros of differences of meromorphic functions Sci. China Ser. A Math. 52 2447-2458
  • [3] Chen ZX(2008)On the Nevanlinna characteristic of Ramanujan J. 16 105-129
  • [4] Shon KH(1966) and difference equations in the complex plane Bull. Am. Math. Soc. 72 86-88
  • [5] Chiang YM(2006)On the equation J. Math. Anal. Appl. 314 477-487
  • [6] Feng SJ(2006)Difference analogue of the lemma on the logarithmic derivative with applications to difference equations Ann. Acad. Sci. Fenn. Math. 31 463-478
  • [7] Gross F(2007)Nevanlinna theory for the difference operator Proc. Lond. Math. Soc. 94 443-474
  • [8] Halburd RG(2014)Finite-order meromorphic solutions and the discrete Painleve equations Bull. Aust. Math. Soc. 90 444-456
  • [9] Korhonen RJ(1995)The Tumura–Clunie theorem in several complex variables Complex Var. 27 269-285
  • [10] Halburd RG(1995)Malmquist type theorem and factorization of meromorphic solutions of partial differential equations Am. Math. Mon. 102 159-161