Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.)

被引:0
|
作者
Fernanda Raquel Martins Abreu
Beata Dedicova
Rosana Pereira Vianello
Anna Cristina Lanna
João Augusto Vieira de Oliveira
Ariadna Faria Vieira
Odilon Peixoto Morais
João Antônio Mendonça
Claudio Brondani
机构
[1] Universidade Federal de Goiás,Instituto de Ciências Biológicas
[2] International Center for Tropical Agriculture A.A. 6713,Escola de Agronomia
[3] Embrapa Arroz e Feijão,undefined
[4] Universidade Federal de Goiás,undefined
来源
Protoplasma | 2018年 / 255卷
关键词
Genetic engineering; Grain yield; Abiotic stress; Gene expression;
D O I
暂无
中图分类号
学科分类号
摘要
This work aimed to evaluate the drought tolerance of transformed plants of the cultivar BRSMG Curinga that overexpress the rice phospholipase D α1 (OsPLDα1) gene. The productivity of independent transformation event plants of the OsPLDα1 gene was evaluated in an experiment where 19 days of water deficit were applied at the reproductive stage, a very strict growing condition for upland rice. The non-genetically modified cultivar (NGM) under drought treatment reduced productivity by 89% compared with that under irrigated treatment, whereas transformed plants (PLDα1_E2) reduced productivity by only 41%. After the drought treatment, the PLDα1_E2 plants productivity was five times greater than that of the NGM plant. Moreover, no adverse effects on growth and development of the transgenic plants were observed. Seven days after the resumption of irrigation, PLDα1_E2 plants had higher stomatal conductance, greater photosynthetic rate, and transpiration rate than did NGM plants, as well as a higher expression level of the OsPLDα1 gene. A delay in the senescence process was observed in these PLDα1_E2 plants, and this was determined for the recovery of photosynthesis, with greater expression of the Rubisco and lower expression of the SOD. This finding was suggestive of decreased oxidative stress, probably due to gas exchange by the partial closure of the stomata of these transformed plants, which prevented the formation of reactive oxygen species. OsPLDα1 gene overexpression resulted in a reduction in production loss under severe water deficit and revealed a possibility for the development of upland rice cultivars that are more tolerant to extreme drought conditions.
引用
收藏
页码:1751 / 1761
页数:10
相关论文
共 50 条
  • [11] Recent advances in molecular breeding of drought tolerance in rice (Oryza sativa L.)
    Soren, Khela Ram
    Ali, Kishwar
    Tyagi, Vandana
    Tyagi, Aruna
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (03): : 233 - 251
  • [12] Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.)
    M. S. Vinod
    Naveen Sharma
    K. Manjunatha
    Adnan Kanbar
    N. B. Prakash
    H. E. Shashidhar
    Journal of Biosciences, 2006, 31 : 69 - 74
  • [13] Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.)
    Vinod, MS
    Sharma, N
    Manjunatha, K
    Kanbar, A
    Prakash, NB
    Shashidhar, HE
    JOURNAL OF BIOSCIENCES, 2006, 31 (01) : 69 - 74
  • [14] Rice (Oryza Sativa L.) Tolerance to Drought Can Be Improved by Silicon Application
    Ibrahim, Mostafa A.
    Merwad, Abdel-Rahman M.
    Elnaka, Elsayed A.
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2018, 49 (08) : 945 - 957
  • [15] Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa)
    Silveira, R. D. D.
    Abreu, F. R. M.
    Mamidi, S.
    McClean, P. E.
    Vianello, R. P.
    Lanna, A. C.
    Carneiro, N. P.
    Brondani, C.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (03): : 8181 - 8200
  • [16] Overexpression of Rice Rab7 Gene Improves Drought and Heat Tolerance and Increases Grain Yield in Rice (Oryza sativa L.)
    El-Esawi, Mohamed A.
    Alayafi, Aisha A.
    GENES, 2019, 10 (01)
  • [17] Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces
    Beena, Radha
    Kirubakaran, Silvas
    Nithya, Narayanan
    Manickavelu, Alagu
    Sah, Rameshwar Prasad
    Abida, Puthenpeedikal Salim
    Sreekumar, Janardanan
    Jaslam, Poolakkal Muhammed
    Rejeth, Rajendrakumar
    Jayalekshmy, Vijayalayam Gengamma
    Roy, Stephen
    Manju, Ramakrishnan Vimala
    Viji, Mariasoosai Mary
    Siddique, Kadambot H. M.
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [18] Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces
    Radha Beena
    Silvas Kirubakaran
    Narayanan Nithya
    Alagu Manickavelu
    Rameshwar Prasad Sah
    Puthenpeedikal Salim Abida
    Janardanan Sreekumar
    Poolakkal Muhammed Jaslam
    Rajendrakumar Rejeth
    Vijayalayam Gengamma Jayalekshmy
    Stephen Roy
    Ramakrishnan Vimala Manju
    Mariasoosai Mary Viji
    Kadambot H. M. Siddique
    BMC Plant Biology, 21
  • [19] Improving the Drought Tolerance in Rice (Oryza sativa L.) by Exogenous Application of Salicylic Acid
    Farooq, M.
    Basra, S. M. A.
    Wahid, A.
    Ahmad, N.
    Saleem, B. A.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2009, 195 (04) : 237 - 246
  • [20] Screening of diverse germplasms for genetic studies of drought tolerance in rice (Oryza sativa L.)
    Ashfaq, Muhammad
    Haider, Muhammad Saleem
    Ali, Amna
    Ali, Muhammad
    Hanif, Sana
    Mubashar, Urooj
    CARYOLOGIA, 2014, 67 (04) : 296 - 304