Taut Distance-Regular Graphs of Odd Diameter

被引:0
作者
Mark S. MacLean
机构
[1] University of North Carolina,
来源
Journal of Algebraic Combinatorics | 2003年 / 17卷
关键词
distance-regular graph; association scheme; bipartite graph; tight graph; taut graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct eigenvalues θ0 > θ1 > ··· > θD. Let M denote the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of M associated with θi. We refer to E0 and ED as the trivial idempotents of M. Let E, F denote primitive idempotents of M. We say the pair E, F is taut whenever (i) E, F are nontrivial, and (ii) the entry-wise product E ○ F is a linear combination of two distinct primitive idempotents of M. We show the pair E, F is taut if and only if there exist real scalars α, β such that
引用
收藏
页码:125 / 147
页数:22
相关论文
共 22 条
  • [1] Curtin B.(1998)2-homogeneous bipartite distance-regular graphs Discrete Math. 187 39-70
  • [2] Dickie G.(1996)Dual bipartite Q-polynomial distance-regular graphs Europ.J.Combin. 17 613-623
  • [3] Terwilliger P.(2002)Krein parameters and antipodal tight graphs with diameter 3 and 4 Discrete Math. 244 181-202
  • [4] Jurišić A.(2000)Nonexistence of some antipodal distance-regular graphs of diameter four Europ.J.Combin. 21 1039-1046
  • [5] Koolen J.(2000)A local approach to 1-homogeneous graphs Designs, Codes, and Cryptography 21 127-147
  • [6] Jurišić A.(1998)Tight distance-regular graphs Tight distance-regular graphs with small diameter 36 621-197
  • [7] Koolen J.(2000)An inequality involving two eigenvalues of a bipartite distance-regular graph J.Alg.Combin. 12 163-216
  • [8] Jurišić A.(2000)Homogeneous graphs and regular near polygons Discrete Math. 225 193-71
  • [9] Koolen J.(1994)Spin models on bipartite distance-regular graphs J.Combin.Theory Ser.B 60 63-313
  • [10] Jurišić A.(1995)An inequality on the cosines of a tight distance-regular graph J.Combin.Theory Ser.B 64 300-159