We introduce Sobolev spaces and capacities on the path space Pm 0(M) over a compact Riemannian manifold M. We prove the smoothness of the Itô map and the stochastic anti-development map in the sense of stochastic calculus of variation. We establish a Sobolev norm comparison theorem and a capacity comparison theorem between the Wiener space and the path space Pm 0(M). Moreover, we prove the tightness of (r, p)-capacities on Pm 0(M), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}, which generalises a result due to Airault-Malliavin and Sugita on the Wiener space. Finally, we extend our results to the fractional Hölder continuous path space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}.