Sobolev spaces and capacities theory on path spaces over a compact Riemannian manifold

被引:0
作者
Xiang Dong Li
机构
[1] Mathematical Institute,
[2] University of Oxford,undefined
[3] 24-29,undefined
[4] St. Giles,undefined
[5] Oxford,undefined
[6] OX1 3LB,undefined
[7] UK. e-mail: lix@maths.ox.ac.uk,undefined
来源
Probability Theory and Related Fields | 2003年 / 125卷
关键词
Manifold; Riemannian Manifold; Sobolev Space; Compact Riemannian Manifold; Path Space;
D O I
暂无
中图分类号
学科分类号
摘要
 We introduce Sobolev spaces and capacities on the path space Pm 0(M) over a compact Riemannian manifold M. We prove the smoothness of the Itô map and the stochastic anti-development map in the sense of stochastic calculus of variation. We establish a Sobolev norm comparison theorem and a capacity comparison theorem between the Wiener space and the path space Pm 0(M). Moreover, we prove the tightness of (r, p)-capacities on Pm 0(M), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, which generalises a result due to Airault-Malliavin and Sugita on the Wiener space. Finally, we extend our results to the fractional Hölder continuous path space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:96 / 134
页数:38
相关论文
empty
未找到相关数据