Tail asymptotics for M/G/1 type queueing processes with subexponential increments

被引:0
作者
Søren Asmussen
Jakob R. Møller
机构
[1] University of Lund,Department of Mathematical Statistics
来源
Queueing Systems | 1999年 / 33卷
关键词
M/G/1 queues; tail asymptotics; subexponential distributions;
D O I
暂无
中图分类号
学科分类号
摘要
Bivariate regenerative Markov modulated queueing processes {In,Ln} are described. {In} is the phase process, and {Ln} is the level process. Increments in the level process have subexponential distributions. A general boundary behavior at the level 0 is allowed. The asymptotic tail of the cycle maximum, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$M_{C^{{reg}} } $$ \end{document}, during a regenerative cycle, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C^{{reg}} $$ \end{document}, and the asymptotic tail of the stationary random variable L∞, respectively, of the level process are given and shown to be subexponential with L∞ having the heavier tail.
引用
收藏
页码:153 / 176
页数:23
相关论文
共 19 条
  • [1] Tail asymptotics for M/G/1 type queueing processes with subexponential increments
    Asmussen, S
    Moller, JR
    QUEUEING SYSTEMS, 1999, 33 (1-3) : 153 - 176
  • [2] Tail asymptotics for M/G/1-type queueing processes with light-tailed increments
    Moller, JR
    OPERATIONS RESEARCH LETTERS, 2001, 28 (04) : 181 - 185
  • [3] TAIL ASYMPTOTICS OF THE M/G/∞ MODEL
    Mandjes, M.
    Zuraniewski, P.
    STOCHASTIC MODELS, 2011, 27 (01) : 77 - 93
  • [4] Tail asymptotics for the queue length in an M/G/1 retrial queue
    Weixin Shang
    Liming Liu
    Quan-Lin Li
    Queueing Systems, 2006, 52 : 193 - 198
  • [5] Tail asymptotics for the queue length in an M/G/1 retrial queue
    Shang, WX
    Liu, LM
    Li, QL
    QUEUEING SYSTEMS, 2006, 52 (03) : 193 - 198
  • [6] Tail asymptotics for the queue size distribution in an M/G/1 retrial queue
    Kim, Jerim
    Kim, Bara
    Ko, Sung-Seok
    JOURNAL OF APPLIED PROBABILITY, 2007, 44 (04) : 1111 - 1118
  • [7] Tail Asymptotics of the Occupation Measure for a Markov Additive Process with an M/G/1-Type Background Process
    Kobayashi, Masahiro
    Miyazawa, Masakiyo
    Zhao, Yiqiang Q.
    STOCHASTIC MODELS, 2010, 26 (03) : 463 - 486
  • [8] Tail asymptotics for the M1, M2/G1, G2/1 retrial queue with non-preemptive priority
    Liu, Bin
    Zhao, Yiqiang Q.
    QUEUEING SYSTEMS, 2020, 96 (1-2) : 169 - 199
  • [9] Uniform approximations for the M/G/1 queue with subexponential processing times
    Olvera-Cravioto, Mariana
    Glynn, Peter W.
    QUEUEING SYSTEMS, 2011, 68 (01) : 1 - 50
  • [10] Uniform approximations for the M/G/1 queue with subexponential processing times
    Mariana Olvera-Cravioto
    Peter W. Glynn
    Queueing Systems, 2011, 68 : 1 - 50