Isomorphisms of Cayley graphs of a free Abelian group

被引:0
作者
A. A. Ryabchenko
机构
[1] Moscow Institute of Physics and Technology,
来源
Siberian Mathematical Journal | 2007年 / 48卷
关键词
abelian group; Cayley graph; distance graph;
D O I
暂无
中图分类号
学科分类号
摘要
A group G is called a CI-group provided that the existence of some automorphism σ ∈ Aut(G) such that σ(A) = B follows from an isomorphism Cay(G, A) ≅ = Cay (G, B) between Cayley graphs, where A and B are two systems of generators for G. We prove that every finitely generated abelian group is a CI-group.
引用
收藏
页码:919 / 922
页数:3
相关论文
共 3 条
[1]  
Li C.-H.(2002)On isomorphisms of finite Cayley graphs—a survey Discrete Math. 256 301-334
[2]  
Muzychuk M.(1995)Ádám’s conjecture is true in the square-free case J. Combin. Theory Ser. A 72 118-134
[3]  
Muzychuk M.(1997)On Ádám’s conjecture for circulant graphs Discrete Math. 167/168 497-510