Parametric models of cyclostationary signals

被引:2
作者
Kravets I.B. [1 ]
机构
[1] Karpenko Physico-Mechanical Institute of NASU, Lviv
关键词
Regression analysis;
D O I
10.3103/S0735272712060039
中图分类号
学科分类号
摘要
Paper presents theoretical results of modeling periodically correlated random processes. We compare the known parametric models: periodic autoregression model of moving average, parametric model of coherent representation and parametric model of harmonic representation. Dependences of properties of correlation and spectral functions related to different models of periodically correlated random processes on their parameters are studied. Main differences between approximations of characteristics of the considered models are revealed. © 2012 Allerton Press, Inc.
引用
收藏
页码:257 / 267
页数:10
相关论文
共 15 条
[1]  
Dragan Y.P., Rozhkov V.A., Yavorskyj I.N., Methods of Probabilistic Analysis of Rhythm of Ocean Processes, (1987)
[2]  
Mykhailyshyn V.Yu., Yavors'kyi I.M., Vasylyna T., Drabych P.O., Isaev Yu.I., Probabilistic models and statistical methods for the analysis of vibrational signals in the problems of diagnostics of machine, Materials Science, 33, 5, (1997)
[3]  
Yavors'Kyi I., Kravets I., Isaev I., Drabych P., Mats'Ko I., Methods for enhancement of the efficiency of statistical analysis of vibration signals from the bearing supports of turbines at thermal-electric power plants, Materials Science, 45, 3, (2009)
[4]  
Yavors'Kyi M., Drabych P.P., Kravets I.B., Mats'Ko I., Methods for vibration diagnostics of the initial stages of damage of rotation systems, Materials Science, 47, 2, (2011)
[5]  
Javorskyj I., Isaev I., Zakrzewski Z., Brooks S.P., Coherent covariance analysis of periodically correlated random processes, Signal Processing, 8, 1, (2007)
[6]  
Jaworski I., Krawiec I., Zakrzewski Z., Koherentna i komponentna filtracja okresowo niestacjonarnych sygnalow losowych, Przegland Telekomunikacyjny, 8-9, (2011)
[7]  
Jaworskyj I., Leskow J., Krawets I., Isayev I., Gajecka Linear filtration methods for statistical analysis of periodically correlated random processes-Part I: Coherent and component methods and their generalization, Signal Processing
[8]  
Javorskyj I., Isayev I., Majewski J., Yuzefovych R., Component covariance analysis for periodically correlated random processes, Signal Processing, 90, (2010)
[9]  
Yavorskyj I.N., Yuzefovych R.M., Kravets I.B., Zakrzewski Z., Least squares method in the statistic analysis of periodically correlated random processes, Radioelectron. Commun. Syst., 54, 1, (2011)
[10]  
Marple S.L., Digital Spectral Analysis with Applications, (1987)