共 44 条
[1]
Xu K., Li Y., Deng R.H., Chen K., DeepRefiner: Multi-layer Android malware detection system applying deep neural networks, Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), pp. 473-487, (2018)
[2]
Qiu J., Nepal S., Luo W., Pan L., Tai Y., Zhang J., Xiang Y., Datadriven Android malware intelligence: a survey, Proc. International Conference on Machine Learning for Cyber Security, pp. 183-202, (2019)
[3]
Guerra-Manzanares A., Luckner M., Bahsi H., Concept drift and cross-device behavior: challenges and implications for effective android malware detection, Comput Secur, 120, (2022)
[4]
Dash S.K., Suarez-Tangil G., Khan S., Tam K., Ahmadi M., Kinder J., Cavallaro L., ‘‘DroidScribe: Classifying android malware based on runtime behavior, Proc. IEEE Security Privacy Workshops (SPW), pp. 252-261, (2016)
[5]
Luo S., Liu Z., Ni B., Wang H., Sun H., Yuan Y., ‘Android malware analysis and detection based on attention-cnn-lstm’, J Comput, 14, 1, pp. 31-44, (2019)
[6]
Su X., Shi W., Qu X., Zheng Y., Liu X., ‘DroidDeep: using deep belief network to characterize and detect android malware’, Soft Comput, 24, 8, pp. 6017-6030, (2020)
[7]
Wang Z., Liu Q., Chi Y., Review of android malware detection based on deep learning”, in Proc, IEEE Access, 8, pp. 181102-181126, (2020)
[8]
Pektas A., Acarman T., ‘Learning to detect android malware via opcode sequences’, Neurocomputing, 396, pp. 599-608, (2019)
[9]
Zhang Y., Yang Y., Wang X., ‘‘A novel Android malware detection approach based on convolutional neural network, Proceedings of the 2Nd International Conference on Cryptography, Security and Privacy, pp. 144-149, (2018)
[10]
Karbab E.B., Debbabi M., Derhab A., Mouheb D., ‘MalDozer: automatic framework for Android malware detection using deep learning’, Digit Invest, 24, pp. S48-S59, (2018)