Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves
被引:0
作者:
O. Lyubchyk
论文数: 0引用数: 0
h-index: 0
机构:National Academy of Sciences of Ukraine,Main Astronomical Observatory
O. Lyubchyk
E. P. Kontar
论文数: 0引用数: 0
h-index: 0
机构:National Academy of Sciences of Ukraine,Main Astronomical Observatory
E. P. Kontar
Y. M. Voitenko
论文数: 0引用数: 0
h-index: 0
机构:National Academy of Sciences of Ukraine,Main Astronomical Observatory
Y. M. Voitenko
N. H. Bian
论文数: 0引用数: 0
h-index: 0
机构:National Academy of Sciences of Ukraine,Main Astronomical Observatory
N. H. Bian
D. B. Melrose
论文数: 0引用数: 0
h-index: 0
机构:National Academy of Sciences of Ukraine,Main Astronomical Observatory
D. B. Melrose
机构:
[1] National Academy of Sciences of Ukraine,Main Astronomical Observatory
[2] University of Glasgow,School of Physics and Astronomy
[3] Belgian Institute for Space Aeronomy,Solar
[4] University of Sydney,Terrestrial Centre of Excellence
来源:
Solar Physics
|
2017年
/
292卷
关键词:
Radio bursts, type I;
Turbulence;
Waves, Alfvén;
Corona;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\upbeta$\end{document} of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$m_{\mathrm{e}}/m_{\mathrm{i}}$\end{document}. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 1010K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$10^{10}~\mbox{K}$\end{document} for continuum emission, and can exceed 1011K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$10^{11}~\mbox{K}$\end{document} for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$100\%$\end{document} polarization in the sense of the ordinary (o-) mode of type I emission.