Analysis on an HDG Method for the p-Laplacian Equations

被引:0
作者
Weifeng Qiu
Ke Shi
机构
[1] City University of Hong Kong,Department of Mathematics
[2] Old Dominion University,Department of Mathematics and Statistics
来源
Journal of Scientific Computing | 2019年 / 80卷
关键词
Discontinuous Galerkin; p-Laplacian; Hybridization; 65N30; 65L12;
D O I
暂无
中图分类号
学科分类号
摘要
In Cockburn and Shen (SIAM J Sci Comput 38(1):A545–A566, 2016) the authors propose the first hybridizable discontinuous Galerkin method (HDG) for the p-Laplacian equation. Several iterative algorithms are developed and tested. The main purpose of this paper is to provide rigorous error estimates for the proposed HDG method. We first develop the error estimates based on general polyhedral/polygonal triangulations, under standard regularity assumption of the solution, the convergence analysis is presented for 1<p<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2$$\end{document} and p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}. Nevertheless, when p approaches to the limits (p→1+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow 1^+$$\end{document} or p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow \infty $$\end{document}), the convergence rate shows degeneration for both cases. Finally, this degeneration can be recovered if we use simplicial triangulation of the domain with sufficient large stabilization parameter for the method.
引用
收藏
页码:1019 / 1032
页数:13
相关论文
共 94 条
[1]  
Araya R(2018)Analysis of an adaptive HDG method for the Brinkman problem.IMA J. Numer. Anal. 61 523-537
[2]  
Solano M(1993)Finite element approximation of the p-Laplacian Math. Comput. 29 827-855
[3]  
Vega P(2009)Compact embeddings of broken Sobolev spaces and applications IMA J. Numer. Anal. 346 1013-1016
[4]  
Barrett JW(2008)Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian C. R. Math. Acad. Sci. Paris 345 382-401
[5]  
Liu WB(2019)An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method Comput. Methods Appl. Mech. Eng. 85 2715-2742
[6]  
Buffa A(2016)Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension Math. Comput. 333 287-310
[7]  
Ortner C(2018)A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations Comput. Methods Appl. Mech. Eng. 54 373-393
[8]  
Burman E(1989)Finite element error estimates for non-linear elliptic equations of monotone type Numer. Math. 12 619-642
[9]  
Ern A(2017)A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media Netw. Heterog. Med. 47 1319-1365
[10]  
Bustinza R(2009)Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems SIAM J. Numer. Anal. 80 723-760