Upper Total Domination in Claw-Free Cubic Graphs

被引:0
作者
Ammar Babikir
Michael A. Henning
机构
[1] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Total domination; Upper total domination; Claw-free cubic graph; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some other vertex in S. A total dominating set S is minimal if no proper subset of S is a total dominating set of G. The upper total domination number, Γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _t(G)$$\end{document}, of G is the maximum cardinality of a minimal total dominating set of G. A claw-free graph is a graph that does not contain a claw K1,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,3}$$\end{document} as an induced subgraph. It is known, or can be readily deduced, that if G≠K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \ne K_4$$\end{document} is a connected claw-free cubic graph of order n, then 13n≤α(G)≤25n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3}n \le \alpha (G) \le \frac{2}{5}n$$\end{document}, and 13n≤Γ(G)≤12n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3}n \le \Gamma (G) \le \frac{1}{2}n$$\end{document}, and these bounds are tight, where α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)$$\end{document} and Γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)$$\end{document} denote the independence number and upper domination number, respectively, of G. In this paper, we prove that if G is a connected claw-free cubic graph of order n, then 49n≤Γt(G)≤35n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4}{9}n \le \Gamma _t(G) \le \frac{3}{5}n$$\end{document}.
引用
收藏
相关论文
共 43 条
[1]  
Babikir A(2022)Domination versus total domination in claw-free cubic graphs Discrete Math. 345 Paper No. 112784-1410
[2]  
Henning MA(2022)Triangles and (total) domination in subcubic graphs Graphs Comb. 38 Paper 28-219
[3]  
Babikir A(2008)Claw-free graphs. V. Global structure J. Comb. Theory Ser. B 98 1373-276
[4]  
Henning MA(1980)Total domination in graphs Networks 10 211-63
[5]  
Chudnovsky M(2018)Total domination versus domination in cubic graphs Graphs Comb. 34 261-147
[6]  
Seymour P(2017)Partitioning the vertices of a cubic graph into two total dominating sets Discrete Appl. Math. 223 52-456
[7]  
Cockayne EJ(1997)Claw-free graphs—a survey Discrete Math. 164 87-3507
[8]  
Dawes RM(2004)Paired-domination in claw-free cubic graphs Graphs Comb. 20 447-844
[9]  
Hedetniemi ST(2008)Bounds on total domination in claw-free cubic graphs Discrete Math. 308 3491-3116
[10]  
Cyman J(2018)Semipaired domination in claw-free cubic graphs Graphs Comb. 34 819-813