Singular Doubly Nonlocal Elliptic Problems with Choquard Type Critical Growth Nonlinearities

被引:0
作者
Jacques Giacomoni
Divya Goel
K. Sreenadh
机构
[1] Université de Pau et des Pays de l’Adour,Department of Mathematics
[2] LMAP (UMR E2S-UPPA CNRS 5142),undefined
[3] Indian Institute of Technology Delhi,undefined
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Choquard equation; Fractional Laplacian; Singular nonlinearity; Nonsmooth analysis; Regularity; 49J35; 35A15; 35S15; 46E35; 49J52;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of elliptic equations involving singular nonlinearities is well-studied topic but the interaction of singular type nonlinearity with nonlocal nonlinearity in elliptic problems has not been investigated so far. In this article, we study the very singular and doubly nonlocal singular problem (Pλ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_\lambda )$$\end{document} (See below). Firstly, we establish a very weak comparison principle and the optimal Sobolev regularity. Next using the critical point theory of nonsmooth analysis and the geometry of the energy functional, we establish the global multiplicity of positive weak solutions.
引用
收藏
页码:4492 / 4530
页数:38
相关论文
共 83 条
[21]  
Chen S(2018)Positive solutions of fractional elliptic equation with critical and singular nonlinearity J. Math. Anal. Appl. 467 638-672
[22]  
Liu B(2012)Doubly nonlocal system with HardyLittlewood-Sobolev critical nonlinearity C. R. Math. Acad. Sci. Paris 350 383-388
[23]  
Chen X(2007)Singular quasilinear elliptic equations and Hölder regularity Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 117-158
[24]  
Zhang MM(2019)Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation Nonlinear Anal. 186 162-186
[25]  
Zhang G(2003)Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity J. Differ. Equ. 189 487-512
[26]  
Coclite MG(2004)Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem Adv. Differ. Equ. 9 197-220
[27]  
Palmieri PH(2008)Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities J. Differ. Equ. 245 1997-2037
[28]  
Crandall L(2020)BrezisNirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem Adv. Nonlinear Anal. 9 690-709
[29]  
Rabinowitz P(2015)Superlinear Schrödinger-Kirschhoff type problems involving the fractional Calc. Var. Partial Differ. Equ. 52 199-235
[30]  
Tartar G(2015)-Laplacian and critical exponent Trans. Am. Math. Soc. 367 6557-6579