Singular Doubly Nonlocal Elliptic Problems with Choquard Type Critical Growth Nonlinearities

被引:0
作者
Jacques Giacomoni
Divya Goel
K. Sreenadh
机构
[1] Université de Pau et des Pays de l’Adour,Department of Mathematics
[2] LMAP (UMR E2S-UPPA CNRS 5142),undefined
[3] Indian Institute of Technology Delhi,undefined
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Choquard equation; Fractional Laplacian; Singular nonlinearity; Nonsmooth analysis; Regularity; 49J35; 35A15; 35S15; 46E35; 49J52;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of elliptic equations involving singular nonlinearities is well-studied topic but the interaction of singular type nonlinearity with nonlocal nonlinearity in elliptic problems has not been investigated so far. In this article, we study the very singular and doubly nonlocal singular problem (Pλ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_\lambda )$$\end{document} (See below). Firstly, we establish a very weak comparison principle and the optimal Sobolev regularity. Next using the critical point theory of nonsmooth analysis and the geometry of the energy functional, we establish the global multiplicity of positive weak solutions.
引用
收藏
页码:4492 / 4530
页数:38
相关论文
共 83 条
[1]  
Adimurthi J(2018)Positive solutions to a fractional equation with singular nonlinearity J. Differ. Equ. 265 1191-1226
[2]  
Giacomoni S(2006)Multiplicity of positive solutions for a singular and critical elliptic problem in Commun. Contemp. Math. 8 621-656
[3]  
Santra J(2015)Semilinear problems for the fractional laplacian with a singular nonlinearity Open Math. J. 13 390-407
[4]  
Adimurthi B(2010)Semilinear elliptic equations with singular nonlinearities Calc. Var. Partial Differ. Equ. 37 363-380
[5]  
Giacomoni I(2015)Some regularity results for singular elliptic problems Dyn. Syst. Differ. Equ. Appl. Proc. AIMS 2015 142-150
[6]  
Barrios M(1983)A relation between pointwise convergence offunctions and convergence of functionals Proc. Am. Math. Soc. 88 486-90
[7]  
De Bonis I(2004)A variational approach to a class of singular semilinear elliptic equations J. Convex Anal. 11 147-162
[8]  
Medina L(2019)Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth Adv. Nonlinear Anal. 8 1184-1212
[9]  
Peral L(2016)Ground state solutions for non-autonomous fractional Choquard equations Nonlinearity 29 1827-1842
[10]  
Boccardo B(2020)Existence and nonexistence results for Kirchhoff-type problems with convolution nonlinearity Adv. Nonlinear Anal. 9 148-167