Finite Element Method for Fractional Parabolic Integro-Differential Equations with Smooth and Nonsmooth Initial Data

被引:0
作者
Shantiram Mahata
Rajen Kumar Sinha
机构
[1] Indian Institute of Technology Guwahati,Department of Mathematics
来源
Journal of Scientific Computing | 2021年 / 87卷
关键词
Fractional parabolic integro-differential equation; Finite element method; Semidiscrete; Fully discrete; Smooth and nonsmooth initial data; Convolution quadrature; Error estimates; 35R09; 35R11; 65M60; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the space-time finite element discretizations for time fractional parabolic integro-differential equations in a bounded convex polygonal domain in Rd(d=1,2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d (d=1,2,3)$$\end{document}. Both spatially semidiscrete and fully discrete finite element approximations are considered and analyzed. We use piecewise linear and continuous finite elements to approximate the space variable whereas the time discretization uses two fully discrete schemes based on the convolution quadrature, namely the backward Euler and the second-order backward difference. For the spatially discrete scheme, optimal order a priori error estimates are derived for smooth initial data, i.e., when u0∈H01(Ω)∩H2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0\in H_0^1(\varOmega )\cap H^2(\varOmega )$$\end{document}. Moreover, for the homogeneous problem, almost optimal error estimates for positive time are established for nonsmooth initial data, i.e., when the initial function u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is only in L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2(\varOmega )$$\end{document}. The error estimates for the fully discrete methods are shown to be optimal in time for both smooth and nonsmooth initial data under the specific choice of the kernel operator in the integral. Finally, we provide some numerical illustrations to verify our theoretical analysis.
引用
收藏
相关论文
共 84 条
[1]  
Amer YA(2018)Solving fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method CMC Comput. Mater. Continua 54 161-180
[2]  
Mahdy AMS(2009)Solution of fractional integro-differential equations by using fractional differential transform method Chaos Solitons Fractals 40 521-529
[3]  
Youssef ESM(1998)Euler, backward, type methods for parabolic integro-differential equations in Banach space RAIRO Modél. Math. Anal. Numér. 32 85-99
[4]  
Arikoglu A(2010)The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces Nonlinear Anal. 72 4587-4593
[5]  
Ozkol I(2015)An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid Numer. Math. 131 1-31
[6]  
Bakaev NY(1988)Nonclassical Calcolo 25 187-201
[7]  
Larsson S(2006) projection and Galerkin methods for nonlinear parabolic integro-differential equations Math. Comput. 75 673-696
[8]  
Thomée V(2018)Convolution quadrature time discretization of fractional diffusion-wave equations Cogent Math. Stat. 5 1460030-265
[9]  
Balachandran K(2012)Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition J. Numer. Math. 20 251-514
[10]  
Trujillo JJ(2009)New development in freefem++ Semigr. Forum 79 507-1134