Countable zipper fractal interpolation and some elementary aspects of the associated nonlinear zipper fractal operator

被引:0
|
作者
K. K. Pandey
P. Viswanathan
机构
[1] Indian Institute of Technology Delhi,Department of Mathematics
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Countable zipper fractal function; Zipper fractal operator; Iterative functional equation; Relative boundedness; Perturbation; Primary 28A80; Secondary 39B12; 47H14; 26A18;
D O I
暂无
中图分类号
学科分类号
摘要
This note aims to extend the notion of affine zipper fractal interpolation function from the case of a finite data set to an infinite sequence of data points. We work with a slightly more general setting wherein the assumption of affinity on the functions involved in the construction of the zipper fractal interpolant is dropped. Invoking the iterative functional equation for the countable zipper fractal interpolant, its stability with a perturbation of data points and sensitivity to perturbations in the maps that define the zipper are examined. In the second part of this note, the countable zipper fractal interpolation is used to obtain a parameterized family of zipper fractal functions corresponding to a prescribed real-valued Lipschitz continuous function on a closed bounded interval in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}. An operator obtained by associating each Lipschitz continuous function to its fractal counterpart is approached from the standpoint of nonlinear functional analysis and perturbation theory of operators.
引用
收藏
页码:175 / 200
页数:25
相关论文
共 50 条
  • [1] Countable zipper fractal interpolation and some elementary aspects of the associated nonlinear zipper fractal operator
    Pandey, K. K.
    Viswanathan, P.
    AEQUATIONES MATHEMATICAE, 2021, 95 (01) : 175 - 200
  • [2] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Garg, Sneha
    Katiyar, Kuldip
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 3021 - 3043
  • [3] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Sneha Garg
    Kuldip Katiyar
    The Journal of Analysis, 2023, 31 (4) : 3021 - 3043
  • [4] On bivariate fractal interpolation for countable data and associated nonlinear fractal operator
    Pandey, Kshitij Kumar
    Secelean, Nicolae Adrian
    Viswanathan, Puthan Veedu
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [5] Non-stationary zipper α-fractal functions and associated fractal operator
    Jha, Sangita
    Verma, Saurabh
    Chand, Arya K. B.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1527 - 1552
  • [6] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [7] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3197 - 3226
  • [8] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [9] MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS: SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL INTERPOLATION OPERATOR
    Pandey K.K.
    Viswanathan P.V.
    Electronic Transactions on Numerical Analysis, 2022, 55 : 627 - 651
  • [10] Contractive Multivariate Zipper Fractal Interpolation Functions
    Miculescu, Radu
    Pasupathi, R.
    RESULTS IN MATHEMATICS, 2024, 79 (04)