Emergent Behavior of a Second-Order Lohe Matrix Model on the Unitary Group

被引:0
作者
Seung-Yeal Ha
Dohyun Kim
机构
[1] Seoul National University,Department of Mathematical Sciences and Research Institute of Mathematics
[2] National Institute for Mathematical Sciences,undefined
来源
Journal of Statistical Physics | 2019年 / 175卷
关键词
Emergence; Kuramoto model; Lohe matrix model; Quantum synchronization; Second-order extension; 82C10; 82C22; 34C15; 34D06;
D O I
暂无
中图分类号
学科分类号
摘要
We study a second-order extension to the first-order Lohe matrix model on the unitary group which can be reduced to the second-order Kuramoto model with inertia as a special case. For the proposed second-order model, we present several sufficient frameworks leading to the emergence of the complete and practical synchronizations in terms of the initial data and the system parameters. For the identical hamiltonians, we show that the complete synchronization emerges asymptotically. In contrast, for the non-identical hamiltonians, the practical synchronization occurs for some class of initial data when the product of the coupling strength and inertia is sufficiently small.
引用
收藏
页码:904 / 931
页数:27
相关论文
共 90 条
[1]  
Acebron JA(2005)The Kuramoto model: a simple paradigm for synchronization phenomena Rev. Mod. Phys. 77 137-185
[2]  
Bonilla LL(1966)Biology of synchronous flashing of fireflies Nature 211 562-564
[3]  
Pérez Vicente CJP(2014)Emergent behaviors of a holonomic particle system on a sphere J. Math. Phys. 55 052703-44
[4]  
Ritort F(2014)Quantum synchronization of the Schrödinger-Lohe model J. Phys. A 47 355104-2621
[5]  
Spigler R(2011)Complete synchronization of Kuramoto oscillators with finite inertia Physica D 240 32-4913
[6]  
Buck J(2014)Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow J. Differ. Equ. 257 2591-196
[7]  
Buck E(2018)Emergent dynamics of the Kuramoto ensemble under the effect of inertia Discret. Contin. Dyn. Syst. 38 4875-187
[8]  
Chi D(2007)Generalizing the Kuramoto model for the study of neuronal synchronization in the brain Physica D 226 181-1564
[9]  
Choi S-H(2019)Synchronization and stability for quantum Kuramoto J. Stat. Phys. 174 160-116
[10]  
Ha S-Y(2014)Synchronization in complex networks of phase oscillators: a survey Automatica 50 1539-439