Magnetic Resonance Molecular Imaging of Plaque Angiogenesis

被引:0
作者
Winter P.M. [1 ,3 ]
Taylor M.D. [2 ]
机构
[1] Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH
[2] The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH
[3] Imaging Research Center, Cincinnati Children's Hospital, Cincinnati, OH
关键词
Angiogenesis; Atherosclerosis; Molecular imaging; MRI; Plaque; Vasa vasorum;
D O I
10.1007/s12410-011-9121-5
中图分类号
学科分类号
摘要
Neovascular expansion of the vasa vasorum is an early pathological biomarker of atherosclerosis, preceding endothelial dysfunction. Plaque angiogenesis accompanies intraplaque hemorrhage and plaque rupture, precursors of myocardial infarction and stroke. Molecular imaging of angiogenesis aims to map the expression of neovascular biomarkers on a cellular scale, often utilizing paramagnetic or superparamagnetic MRI contrast agents in order to generate sufficient image enhancement. Both clinically approved extracellular contrast agents and experimental targeted nanoparticles have demonstrated MRI signal enhancement that is proportional to the neovascular density in the vessel wall. Furthermore, targeted contrast agents formulated with anti-angiogenic drugs can be used to quantify drug deposition within the plaque and predict subsequent therapeutic effects. Molecular imaging of plaque angiogenesis has shown promise for interrogating the pathophysiology of atherosclerotic lesions rather than just their physical characteristics, with the ultimate goal of identifying the high-risk plaques that are most likely to cause cardiovascular events. © 2011 Springer Science+Business Media, LLC.
引用
收藏
页码:36 / 44
页数:8
相关论文
共 68 条
  • [1] Ross R., The pathogenesis of atherosclerosis: a perspective for the 1990s, Nature, 362, 6423, pp. 801-809, (1993)
  • [2] Herrmann J., Lerman L.O., Rodriguez-Porcel M., Holmes Jr. D.R., Richardson D.M., Ritman E.L., Et al., Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia, Cardiovasc Res, 51, 4, pp. 762-766, (2001)
  • [3] Sluimer J.C., Daemen M.J., Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis, J Pathol, 218, 1, pp. 7-29, (2009)
  • [4] Virmani R., Burke A.P., Farb A., Kolodgie F.D., Pathology of the vulnerable plaque, J Am Coll Cardiol, 47, 8 SUPPL., (2006)
  • [5] Cyrus T., Winter P.M., Caruthers S.D., Wickline S.A., Lanza G.M., Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy, Expert Rev Cardiovasc Ther, 3, 4, pp. 705-715, (2005)
  • [6] Winter P.M., Cai K., Caruthers S.D., Wickline S.A., Lanza G.M., Emerging nanomedicine opportunities with perfluorocarbon nanoparticles, Expert Rev Med Devices, 4, 2, pp. 137-145, (2007)
  • [7] Sosnovik D.E., Molecular imaging in cardiovascular magnetic resonance imaging: current perspective and future potential, Top Magn Reson Imaging, 19, 1, pp. 59-68, (2008)
  • [8] Botnar R.M., Buecker A., Wiethoff A.J., Parsons Jr. E.C., Katoh M., Katsimaglis G., Et al., In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent, Circulation, 110, 11, pp. 1463-1466, (2004)
  • [9] Botnar R.M., Perez A.S., Witte S., Wiethoff A.J., Laredo J., Hamilton J., Et al., In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent, Circulation, 109, 16, pp. 2023-2029, (2004)
  • [10] Katoh M., Haage P., Wiethoff A.J., Gunther R.W., Bucker A., Tacke J., Et al., Molecular magnetic resonance imaging of deep vein thrombosis using a fibrin-targeted contrast agent: a feasibility study, Invest Radiol, 44, 3, pp. 146-150, (2009)