Lattice Points in Large Borel Sets and Successive Minima

被引:0
作者
Iskander Aliev
Peter M. Gruber
机构
[1] School of Mathematics,
[2] University of Edinburgh,undefined
[3] James Clerk Maxwell Building,undefined
[4] King's Buildings,undefined
[5] Mayfield Road,undefined
[6] Edinburgh EH9 3JZ,undefined
[7] Forschungsgruppe,undefined
[8] Konvexe und Diskrete Geometrie,undefined
[9] Technische Universitat Wien,undefined
[10] Wiedner Hauptstrass e 8-10/1046,undefined
[11] A-1040 Vienna,undefined
来源
Discrete & Computational Geometry | 2006年 / 35卷
关键词
Computational Mathematic; Volume Versus; Lattice Point; Independent Point; Baire Category;
D O I
暂无
中图分类号
学科分类号
摘要
Let B be a Borel set in Ed with volume V(B) = ∞. It is shown that almost all lattices L in Ed contain infinitely many pairwise disjoint d-tuples, that is sets of d linearly independent points in B. A consequence of this result is the following: let S be a star body in Ed with V(S ) = ∞. Then for almost all lattices L in Ed the successive minima λ1(S,L),..., λd(S,L) of S with respect to L are 0. A corresponding result holds for most lattices in the Baire category sense. A tool for the latter result is the semi-continuity of the successive minima.
引用
收藏
页码:429 / 435
页数:6
相关论文
共 50 条
[31]   Visibility Properties Of Lattice Points In Multiple Random Walks [J].
Lu, M. .
ACTA MATHEMATICA HUNGARICA, 2024, 172 (02) :289-305
[32]   Lattice Points in Algebraic Cross-polytopes and Simplices [J].
Borda, Bence .
DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (01) :145-169
[33]   Lattice Points, Perturbation Theory and the Periodic Polyharmonic Operator [J].
L. Parnovski ;
A.V. Sobolev .
Annales Henri Poincaré, 2001, 2 :573-581
[34]   Visibility Properties Of Lattice Points In Multiple Random Walks [J].
M. Lu .
Acta Mathematica Hungarica, 2024, 172 :289-305
[35]   Sums, Projections, and Sections of Lattice Sets, and the Discrete Covariogram [J].
Richard J. Gardner ;
Paolo Gronchi ;
Chuanming Zong .
Discrete & Computational Geometry, 2005, 34 :391-409
[36]   The sets of divergence points of self-similar measures are residual [J].
Li, Jinjun ;
Wu, Min .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) :429-437
[37]   Large null sets in metric spaces [J].
Misík, L ;
Tichy, RF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) :424-437
[38]   On lattice points in rational ellipsoids: An omega estimate for the error term [J].
Manfred Kühleitner .
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2000, 70 :105-111
[39]   On lattice points in rational ellipsoids:: An omega estimate for the error term [J].
Kühleitner, M .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2000, 70 (1) :105-111
[40]   Covering Lattice Points by Subspaces and Counting Point–Hyperplane Incidences [J].
Martin Balko ;
Josef Cibulka ;
Pavel Valtr .
Discrete & Computational Geometry, 2019, 61 :325-354