Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations

被引:0
|
作者
Zhiwei Yang
Xiangcheng Zheng
Hong Wang
机构
[1] Shandong University,School of Mathematics
[2] Peking University,School of Mathematical Sciences
[3] University of South Carolina,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Caputo–Hadamard fractional stochastic differential equation; Existence and uniqueness; Regularity; 35B65; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence and uniqueness of the solutions to a Caputo–Hadamard fractional stochastic differential equation driven by a multiplicative white noise, which may describe the random phenomena in the ultraslow diffusion processes. The moment estimates are given in terms of the logarithmic Mittag–Leffler function. We also prove the regularity of the solutions via the logarithmic Hölder continuity.
引用
收藏
相关论文
共 50 条
  • [1] Well-posedness and regularity of Caputo-Hadamard fractional stochastic differential equations
    Yang, Zhiwei
    Zheng, Xiangcheng
    Wang, Hong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [2] Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations
    Huong, P. T.
    The, N. T.
    STATISTICS & PROBABILITY LETTERS, 2023, 195
  • [3] Well-posedness and regularity for solutions of caputo stochastic fractional differential equations in Lp spaces
    Phan Thi Huong
    Kloeden, P. E.
    Doan Thai Son
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (01) : 1 - 15
  • [4] WELL-POSEDNESS AND REGULARITY OF CAPUTO-HADAMARD TIME-FRACTIONAL DIFFUSION EQUATIONS
    Yang, Zhiwei
    Zheng, Xiangcheng
    Wang, Hong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [5] WEll-Posedness of General Caputo-Type Fractional Differential Equations
    Chung-Sik Sin
    Fractional Calculus and Applied Analysis, 2018, 21 : 819 - 832
  • [6] WELL-POSEDNESS OF GENERAL CAPUTO-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Sin, Chung-Sik
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 819 - 832
  • [7] WELL-POSEDNESS OF FRACTIONAL DIFFERENTIAL EQUATIONS
    Li, Changpin
    Ma, Li
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 9, 2017,
  • [8] An extension of the well-posedness concept for fractional differential equations of Caputo's type
    Diethelm, Kai
    APPLICABLE ANALYSIS, 2014, 93 (10) : 2126 - 2135
  • [9] Well-posedness and regularity for fractional damped wave equations
    Zhou, Yong
    He, Jia Wei
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 425 - 458
  • [10] Well-posedness and regularity for fractional damped wave equations
    Yong Zhou
    Jia Wei He
    Monatshefte für Mathematik, 2021, 194 : 425 - 458