Remarks on astheno-Kähler manifolds, Bott-Chern and Aeppli cohomology groups

被引:0
作者
Ionuţ Chiose
Rareş Răsdeaconu
机构
[1] Institute of Mathematics of the Romanian Academy,Department of Mathematics
[2] Vanderbilt University,undefined
来源
Annals of Global Analysis and Geometry | 2023年 / 63卷
关键词
Complex manifolds; Astheno-Kähler metrics; Bott-Chern cohomology; Aeppli cohomology; Primary 53C55; Secondary 32J18;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new cohomological obstruction to the existence of astheno-Kähler metrics on compact complex manifolds. Several results of independent interests regarding the Bott-Chern and Aeppli cohomology groups are presented and relevant examples are discussed.
引用
收藏
相关论文
共 79 条
  • [1] Abramovich D(2002)Torification and factorization of birational maps J. Amer. Math. Soc. 15 531-572
  • [2] Karu K(2001)Vanishing theorems on Hermitian manifolds Differential Geom. Appl. 14 251-265
  • [3] Matsuki K(2013)The cohomologies of the Iwasawa manifold and of its small deformations J. Geom. Anal. 23 1355-1378
  • [4] Włodarczyk J(2017)Bott-Chern cohomology of solvmanifolds Ann. Global Anal. Geom. 52 363-411
  • [5] Alexandrov B(2020)Rigidity of Oeljeklaus-Toma manifolds Ann. Inst. Fourier 70 2409-2423
  • [6] Ivanov S(1989)A local index theorem of non-Kähler manifolds Math. Ann. 284 681-699
  • [7] Angella D(2013)On Hermitian structure on Bull Sci. Math. 137 716-717
  • [8] Angella D(1997)On fundamental groups of class VII surfaces Bull. Lond. Math. Soc. 29 98-102
  • [9] Kasuya H(2014)Obstruction to the existence of Kähler structures on compact complex manifolds Proc. Amer. Math. Soc. 142 3561-3568
  • [10] Angella D(2000)Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology Trans. Amer. Math. Soc. 352 5405-5433