The d'Alembert functional equation on metabelian groups

被引:0
|
作者
Corovei I. [1 ]
机构
[1] Technical University, Dept. of Mathematics, 3400 Cluj-Napoca
关键词
General Solution; Functional Equation; Complex Number; Multiplicative Group; Present Note;
D O I
10.1007/s000100050077
中图分类号
学科分类号
摘要
Consider the d'Alembert functional equation f(xy) + f(xy-1) = 2f(x)f(y) for f : G → K where G is a group and K is a field with characteristic ≠ 2. Pl. Kannappan has proved that for K = ℂ, the field of complex numbers, any non-zero solution of d'Alembert's equation which satisfies the condition f(xyz) = f(xzy), ∀x, y, z ∈ G has the form f(x) = g(x) + [g(x)]-1/2 where g is a homomorphism of G into the multiplicative group of ℂ. Investigations of d'Alembert's equation on non-abelian groups led to solutions of the equation not having the form (*). In the present note we obtain the general solution of d'Alembert's equation when G is a metabelian group, and we show that there exist solutions which do not have the form (*). © Birkhäuser Verlag, Basel, 1999.
引用
收藏
页码:201 / 205
页数:4
相关论文
共 50 条
  • [41] On a functional equation related to competition
    Peter Kahlig
    Janusz Matkowski
    Aequationes mathematicae, 2014, 87 : 301 - 308
  • [42] ON A FUNCTIONAL EQUATION
    丁毅
    ActaMathematicaScientia, 2009, 29 (02) : 225 - 231
  • [43] ON A FUNCTIONAL EQUATION
    Ding Yi
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (02) : 225 - 231
  • [44] On a functional equation of Alsina and Garcia-Roig
    Lajko, K
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (3-4): : 507 - 515
  • [45] On a Multilinear Functional Equation
    A. A. Illarionov
    Mathematical Notes, 2020, 107 : 80 - 92
  • [46] On a Multilinear Functional Equation
    Illarionov, A. A.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 80 - 92
  • [47] Remarks on a functional equation
    Daroczy, Zoltan
    Totikt, Vilmos
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4): : 527 - 534
  • [48] A Certain Functional Equation
    An J.S.
    Results in Mathematics, 1998, 33 (3-4) : 198 - 202
  • [49] On a solution to a functional equation
    Patkowski, Alexander E.
    JOURNAL OF APPLIED ANALYSIS, 2022, 28 (01) : 91 - 93
  • [50] On a General Functional Equation
    Bahyrycz, Anna
    SYMMETRY-BASEL, 2025, 17 (03):