The d'Alembert functional equation on metabelian groups

被引:0
作者
Corovei I. [1 ]
机构
[1] Technical University, Dept. of Mathematics, 3400 Cluj-Napoca
关键词
General Solution; Functional Equation; Complex Number; Multiplicative Group; Present Note;
D O I
10.1007/s000100050077
中图分类号
学科分类号
摘要
Consider the d'Alembert functional equation f(xy) + f(xy-1) = 2f(x)f(y) for f : G → K where G is a group and K is a field with characteristic ≠ 2. Pl. Kannappan has proved that for K = ℂ, the field of complex numbers, any non-zero solution of d'Alembert's equation which satisfies the condition f(xyz) = f(xzy), ∀x, y, z ∈ G has the form f(x) = g(x) + [g(x)]-1/2 where g is a homomorphism of G into the multiplicative group of ℂ. Investigations of d'Alembert's equation on non-abelian groups led to solutions of the equation not having the form (*). In the present note we obtain the general solution of d'Alembert's equation when G is a metabelian group, and we show that there exist solutions which do not have the form (*). © Birkhäuser Verlag, Basel, 1999.
引用
收藏
页码:201 / 205
页数:4
相关论文
共 9 条
[1]  
Aczel J., Vorlesungen über Funktionalgleichungen und ihre Anwendungen, (1961)
[2]  
Aczel J., Dhombres J., Functional Equations in Several Variables, (1989)
[3]  
Aczel J., Chung J.K., Ng C.T., Symmetric second differences in product form on groups, Ser. Pure Math. II, pp. 1-12, (1989)
[4]  
Corovei I., The cosine functional equation for nilpotent groups, Aequationes Math., 15, pp. 99-106, (1977)
[5]  
Dacic R., The cosine functional equation for groups, Mat. Vesnik, 6, 21, pp. 339-342, (1969)
[6]  
Forg-Rob W., Schwaiger J., On a generalization of the cosine equation to n summands, Grazer Math. Ber., 316, pp. 219-226, (1992)
[7]  
Kannappan P.L., The functional equation f(xy) + f(xy<sup>-1</sup>) = 2f(x)f(y) for groups, Proc. Amer. Math. Soc., 19, pp. 69-74, (1968)
[8]  
Penney R.C., Rukhin A.L., D'Alembert's functional equation on groups, Proc. Amer. Math. Soc., 77, pp. 73-80, (1979)
[9]  
Stetkaer H., D'Alembert's equation and spherical functions, Aequationes Math., 48, pp. 220-227, (1994)