Cluster structures from 2-Calabi–Yau categories with loops

被引:0
|
作者
Aslak Bakke Buan
Bethany R. Marsh
Dagfinn F. Vatne
机构
[1] Norges Teknisk-Naturvitenskapelige Universitet,Institutt for Matematiske Fag
[2] University of Leeds,Department of Pure Mathematics
来源
Mathematische Zeitschrift | 2010年 / 265卷
关键词
Direct Summand; Cluster Structure; Endomorphism Ring; Cluster Algebra; Rigid Object;
D O I
暂无
中图分类号
学科分类号
摘要
We generalise the notion of cluster structures from the work of Buan–Iyama–Reiten–Scott to include situations where the endomorphism rings of the clusters may have loops. We show that in a Hom-finite 2-Calabi–Yau category, the set of maximal rigid objects satisfies these axioms whenever there are no 2-cycles in the quivers of their endomorphism rings. We apply this result to the cluster category of a tube, and show that this category forms a good model for the combinatorics of a type B cluster algebra.
引用
收藏
页码:951 / 970
页数:19
相关论文
共 13 条