Affine Isometric Embeddings and Rigidity

被引:0
|
作者
Thomas Ivey
机构
[1] Case Western Reserve University,Department of Mathematics
来源
Geometriae Dedicata | 1997年 / 64卷
关键词
affine differential geometry; isometric embedding.;
D O I
暂无
中图分类号
学科分类号
摘要
The Pick cubic form is a fundamental invariant in the (equi)affine differential geometry of hypersurfaces. We study its role in the affine isometric embedding problem, using exterior differential systems (EDS). We give pointwise conditions on the Pick form under which an isometric embedding of a Riemannian manifold M3 into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^4 $$ \end{document} is rigid. The role of the Pick form in the characteristic variety of the EDS leads us to write down examples of nonrigid isometric embeddings for a class of warped product M3's.
引用
收藏
页码:125 / 144
页数:19
相关论文
共 50 条