Iterative differential equation;
periodic solutions;
fixed point theorem;
39B12;
39B82;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we use Schauder and Banach fixed point theorem to study the existence, uniqueness and stability of periodic solutions of a class of iterative differential equation c0x′′(t)+c1x′(t)+c2x(t)=x(p(t)+bx(t))+h(t).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} c_0x''(t)+c_1x'(t)+c_2x(t)=x(p(t)+bx(t))+h(t). \end{aligned}$$\end{document}
机构:
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, NovosibirskSobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Demidenko G.V.
Dulepova A.V.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State University, NovosibirskSobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk