Periodic Solutions of a Second-Order Functional Differential Equation with State-Dependent Argument

被引:0
|
作者
Hou Yu Zhao
Jia Liu
机构
[1] Chongqing Normal University,School of Mathematics
[2] Shandong Urban Construction Vocational College,Department of Architectural Economic Management
来源
关键词
Iterative differential equation; periodic solutions; fixed point theorem; 39B12; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we use Schauder and Banach fixed point theorem to study the existence, uniqueness and stability of periodic solutions of a class of iterative differential equation c0x′′(t)+c1x′(t)+c2x(t)=x(p(t)+bx(t))+h(t).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} c_0x''(t)+c_1x'(t)+c_2x(t)=x(p(t)+bx(t))+h(t). \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条