Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits

被引:0
|
作者
Chueshov I. [1 ]
Lasiecka I. [2 ]
机构
[1] Department of Mechanics and Mathematics, Kharkov University, Kharkov
[2] Department of Mathematics, University of Virginia, Charlottesville
关键词
Global attractors; Kirchhoff limit; Mindlin-Timoshenko plate;
D O I
10.1007/s00032-006-0050-8
中图分类号
学科分类号
摘要
We consider dynamics of a class of Mindlin-Timoshenko plate models with nonlinear feedback forces.We prove the existence of a compact global attractor and study its limiting properties when the shear modulus tends to infinity. This limit corresponds to absence of transverse shear which is one of the Kirchhoff hypotheses in the plate theory. © Birkhäuser Verlag, Basel 2006.
引用
收藏
页码:117 / 138
页数:21
相关论文
共 50 条
  • [1] ON THE STABILITY OF MINDLIN-TIMOSHENKO PLATES
    Sare, Hugo D. Fernandez
    QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (02) : 249 - 263
  • [2] Controllability of the Kirchhoff system for beams as a limit of the Mindlin-Timoshenko system
    Araruna, F. D.
    Zuazua, E.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) : 1909 - 1938
  • [3] STRUCTURAL CONTROL TO MINIMIZE THE DYNAMIC-RESPONSE OF MINDLIN-TIMOSHENKO PLATES
    SADEK, IS
    SLOSS, JM
    BRUCH, JC
    ADALI, S
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1987, 324 (01): : 97 - 111
  • [4] Nonexistence of Global Solutions for Semilinear Mindlin-Timoshenko Beam Equations
    Wang, Yan
    Zhu, Chengke
    2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [5] Exact controllability for the semilinear Mindlin-Timoshenko system
    Antunes, G. O.
    Araruna, F. D.
    Mercado, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
  • [7] Transmission problems for Mindlin-Timoshenko plates: frictional versus viscous damping mechanisms
    Ferreira, Marcio V.
    Munoz Rivera, Jaime E.
    Suarez, Fredy M. S.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [8] Global well-posedness and stability of semilinear Mindlin-Timoshenko system
    Pei, Pei
    Rammaha, Mohammad A.
    Toundykov, Daniel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (02) : 535 - 568
  • [9] Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system
    F. D. Araruna
    P. Braz E Silva
    E. Zuazua
    Journal of Systems Science and Complexity, 2010, 23 : 414 - 430
  • [10] ASYMPTOTIC LIMITS AND STABILIZATION FOR THE 1D NONLINEAR MINDLIN-TIMOSHENKO SYSTEM
    F.D.ARARUNA
    P.BRAZ E SILVA
    E.ZUAZUA
    JournalofSystemsScience&Complexity, 2010, 23 (03) : 414 - 430