Posterior Analysis of Stochastic Frontier Models with Truncated Normal Errors

被引:0
|
作者
Efthymios G. Tsionas
机构
[1] Athens University of Economics and Business,Department of Economics
来源
Computational Statistics | 2001年 / 16卷
关键词
Stochastic frontier model; Efficiency; Truncated normal distribution; Bayesian analysis; Gibbs sampling;
D O I
暂无
中图分类号
学科分类号
摘要
Previous work in stochastic frontier models with exponentially distributed one-sided errors using both Gibbs sampling and Monte Carlo integration with importance sampling reveals the enormous computational gains that can be achieved using the former. This paper takes up inference in another interesting class of stochastic frontier models, those with truncated normal one-sided error terms, and shows that posterior simulation involves drawing from standard or log-concave distributions, implying that Gibbs sampling is an efficient solution to the Bayesian integration problem. The sampling behavior of the Bayesian procedure is investigated using a Monte Carlo experiment. The method is illustrated using US airline data.
引用
收藏
页码:559 / 575
页数:16
相关论文
共 50 条
  • [1] Posterior analysis of stochastic frontier models with truncated normal errors
    Tsionas, EG
    COMPUTATIONAL STATISTICS, 2001, 16 (04) : 559 - 575
  • [2] Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models
    Efthymios G. Tsionas
    Journal of Productivity Analysis, 2000, 13 : 183 - 205
  • [3] Full likelihood inference in normal-gamma stochastic frontier models
    Tsionas, EG
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2000, 13 (03) : 183 - 205
  • [4] Multivariate Skew Normal-Based Stochastic Frontier Models
    Zhu, Xiaonan
    Wei, Zheng
    Wang, Tonghui
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (02)
  • [5] Multivariate Skew Normal-Based Stochastic Frontier Models
    Xiaonan Zhu
    Zheng Wei
    Tonghui Wang
    Journal of Statistical Theory and Practice, 2022, 16
  • [6] Robust estimation in stochastic frontier models
    Song, Junmo
    Oh, Dong-hyun
    Kang, Jiwon
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 243 - 267
  • [7] Quantile stochastic frontier models with endogeneity
    Tsionas, Mike G.
    Assaf, A. George
    Andrikopoulos, Athanasios
    ECONOMICS LETTERS, 2020, 188
  • [8] Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors
    Kamil Makieła
    Błażej Mazur
    Journal of Productivity Analysis, 2022, 58 : 35 - 54
  • [9] Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors
    Makiela, Kamil
    Mazur, Blazej
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2022, 58 (1) : 35 - 54
  • [10] Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models
    Jacek Osiewalski
    Mark F. J. Steel
    Journal of Productivity Analysis, 1998, 10 : 103 - 117