Honest confidence regions and optimality in high-dimensional precision matrix estimation

被引:0
|
作者
Jana Janková
Sara van de Geer
机构
[1] Seminar for Statistics,
[2] ETH Zürich,undefined
来源
TEST | 2017年 / 26卷
关键词
Precision matrix; Sparsity; Inference; Asymptotic normality; Confidence regions; 62J07; 62F12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose methodology for estimation of sparse precision matrices and statistical inference for their low-dimensional parameters in a high-dimensional setting where the number of parameters p can be much larger than the sample size. We show that the novel estimator achieves minimax rates in supremum norm and the low-dimensional components of the estimator have a Gaussian limiting distribution. These results hold uniformly over the class of precision matrices with row sparsity of small order n/logp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}/\log p$$\end{document} and spectrum uniformly bounded, under a sub-Gaussian tail assumption on the margins of the true underlying distribution. Consequently, our results lead to uniformly valid confidence regions for low-dimensional parameters of the precision matrix. Thresholding the estimator leads to variable selection without imposing irrepresentability conditions. The performance of the method is demonstrated in a simulation study and on real data.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 50 条
  • [21] Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data
    Kubokawa, Tatsuya
    Srivastava, Muni S.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (09) : 1906 - 1928
  • [22] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Wang, Guan Peng
    Cui, Heng Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (05) : 689 - 706
  • [23] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [24] JOINT ESTIMATION OF MULTIPLE HIGH-DIMENSIONAL PRECISION MATRICES
    Cai, T. Tony
    Li, Hongzhe
    Liu, Weidong
    Xie, Jichun
    STATISTICA SINICA, 2016, 26 (02) : 445 - 464
  • [25] A novel robust estimation for high-dimensional precision matrices
    Wang, Shaoxin
    Xie, Chaoping
    Kang, Xiaoning
    STATISTICS IN MEDICINE, 2023, 42 (05) : 656 - 675
  • [26] A Unified Theory of Confidence Regions and Testing for High-Dimensional Estimating Equations
    Neykov, Matey
    Ning, Yang
    Liu, Jun S.
    Liu, Han
    STATISTICAL SCIENCE, 2018, 33 (03) : 427 - 443
  • [27] Adjusting for high-dimensional covariates in sparse precision matrix estimation by l1-penalization
    Yin, Jianxin
    Li, Hongzhe
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 365 - 381
  • [28] Confidence regions for entries of a large precision matrix
    Chang, Jinyuan
    Qiu, Yumou
    Yao, Qiwei
    Zou, Tao
    JOURNAL OF ECONOMETRICS, 2018, 206 (01) : 57 - 82
  • [29] High-dimensional covariance matrix estimation with missing observations
    Lounici, Karim
    BERNOULLI, 2014, 20 (03) : 1029 - 1058
  • [30] Estimation of a high-dimensional covariance matrix with the Stein loss
    Tsukuma, Hisayuki
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 148 : 1 - 17