共 50 条
Honest confidence regions and optimality in high-dimensional precision matrix estimation
被引:0
|作者:
Jana Janková
Sara van de Geer
机构:
[1] Seminar for Statistics,
[2] ETH Zürich,undefined
来源:
关键词:
Precision matrix;
Sparsity;
Inference;
Asymptotic normality;
Confidence regions;
62J07;
62F12;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We propose methodology for estimation of sparse precision matrices and statistical inference for their low-dimensional parameters in a high-dimensional setting where the number of parameters p can be much larger than the sample size. We show that the novel estimator achieves minimax rates in supremum norm and the low-dimensional components of the estimator have a Gaussian limiting distribution. These results hold uniformly over the class of precision matrices with row sparsity of small order n/logp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt{n}/\log p$$\end{document} and spectrum uniformly bounded, under a sub-Gaussian tail assumption on the margins of the true underlying distribution. Consequently, our results lead to uniformly valid confidence regions for low-dimensional parameters of the precision matrix. Thresholding the estimator leads to variable selection without imposing irrepresentability conditions. The performance of the method is demonstrated in a simulation study and on real data.
引用
收藏
页码:143 / 162
页数:19
相关论文