Honest confidence regions and optimality in high-dimensional precision matrix estimation

被引:0
作者
Jana Janková
Sara van de Geer
机构
[1] Seminar for Statistics,
[2] ETH Zürich,undefined
来源
TEST | 2017年 / 26卷
关键词
Precision matrix; Sparsity; Inference; Asymptotic normality; Confidence regions; 62J07; 62F12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose methodology for estimation of sparse precision matrices and statistical inference for their low-dimensional parameters in a high-dimensional setting where the number of parameters p can be much larger than the sample size. We show that the novel estimator achieves minimax rates in supremum norm and the low-dimensional components of the estimator have a Gaussian limiting distribution. These results hold uniformly over the class of precision matrices with row sparsity of small order n/logp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}/\log p$$\end{document} and spectrum uniformly bounded, under a sub-Gaussian tail assumption on the margins of the true underlying distribution. Consequently, our results lead to uniformly valid confidence regions for low-dimensional parameters of the precision matrix. Thresholding the estimator leads to variable selection without imposing irrepresentability conditions. The performance of the method is demonstrated in a simulation study and on real data.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 54 条
  • [51] Dezeure R(undefined)undefined undefined undefined undefined-undefined
  • [52] Yuan M(undefined)undefined undefined undefined undefined-undefined
  • [53] Zhang C-H(undefined)undefined undefined undefined undefined-undefined
  • [54] Zhang SS(undefined)undefined undefined undefined undefined-undefined