Honest confidence regions and optimality in high-dimensional precision matrix estimation

被引:0
作者
Jana Janková
Sara van de Geer
机构
[1] Seminar for Statistics,
[2] ETH Zürich,undefined
来源
TEST | 2017年 / 26卷
关键词
Precision matrix; Sparsity; Inference; Asymptotic normality; Confidence regions; 62J07; 62F12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose methodology for estimation of sparse precision matrices and statistical inference for their low-dimensional parameters in a high-dimensional setting where the number of parameters p can be much larger than the sample size. We show that the novel estimator achieves minimax rates in supremum norm and the low-dimensional components of the estimator have a Gaussian limiting distribution. These results hold uniformly over the class of precision matrices with row sparsity of small order n/logp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}/\log p$$\end{document} and spectrum uniformly bounded, under a sub-Gaussian tail assumption on the margins of the true underlying distribution. Consequently, our results lead to uniformly valid confidence regions for low-dimensional parameters of the precision matrix. Thresholding the estimator leads to variable selection without imposing irrepresentability conditions. The performance of the method is demonstrated in a simulation study and on real data.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 54 条
  • [1] Belloni A(2014)Inference on treatment effects after selection amongst high-dimensional controls Rev Econ Stud 81 608-650
  • [2] Chernozhukov V(2011)Square-root Lasso: Pivotal recovery of sparse signals via conic programming Biometrika 98 791-806
  • [3] Hansen C(2008)Covariance regularization by thresholding Ann Statist 36 2577-2604
  • [4] Belloni A(2011)A constrained l1 minimization approach to sparse precision matrix estimation J Am Statist Assoc 106 594-607
  • [5] Chernozhukov V(2007)The dantzig selector: statistical estimation when Ann Statist 35 2313-2351
  • [6] Wang L(2011) is much larger than J Am Statist Assoc 106 608-625
  • [7] Bickel PJ(2004)Bootstrapping lasso estimators Ann Statist 32 407-451
  • [8] Levina E(2008)Least angle regression Biostatistics 9 432-441
  • [9] Cai T(2015)Sparse inverse covariance estimation with the graphical lasso Electron J Statist 9 1205-1229
  • [10] Liu W(2014)Confidence intervals for high-dimensional inverse covariance estimation J Mach Learn Res 15 2869-2909