The Lattices of Kernel Ideals in Pseudocomplemented De Morgan Algebras

被引:0
作者
Xue-Ping Wang
Lei-Bo Wang
机构
[1] Sichuan Normal University,College of Mathematics and Software Science
来源
Order | 2017年 / 34卷
关键词
De Morgan algebra; Distributive ; -algebra; Heyting algebra; Stone lattice; Congruence; Kernel ideal;
D O I
暂无
中图分类号
学科分类号
摘要
In a pseudocomplemented de Morgan algebra, it is shown that the set of kernel ideals is a complete Heyting lattice, and a necessary and sufficient condition that the set of kernel ideals is boolean (resp. Stone) is derived. In particular, a characterization of a de Morgan Heyting algebra whose congruence lattice is boolean (resp. Stone) is given.
引用
收藏
页码:23 / 35
页数:12
相关论文
共 10 条
[1]  
Beazer R(1983)Lattices whose ideal lattice is Stone Proc. Edin. Math. Soc. 26 107-112
[2]  
Castaño V(2011)Subalgebras of Heyting and de Morgan Heyting algebras Studia Logica. 98 123-139
[3]  
Santis MM(1973)Congruences on distributive pseudocomplemented lattices Bull. Austral. Math. Soc. 8 161-179
[4]  
Cornish WH(1980)Sur les Algèbres de Heyting Symétriques Portugaliae Math. 31 1-237
[5]  
Monteire A(2011)A note on Stone join-semilattices Cent. Eur. J. Math. 9 929-933
[6]  
Nimbhorkar SK(1981)Subdirectly irredubible pseudocomplemented de Morgan algebras Algebra Universalis 12 70-75
[7]  
Rahemani A(1987)Principal congruences of pseudocomplemented de Morgan algebras Zeitchr. f. math. Logik und Grundlagen d Math. 33 3-11
[8]  
Romanowska A(1987)Heyting algebras with a dual lattice endomorphism Zeitchr. f. math. Logik und Grundlagen d Math. 33 565-573
[9]  
Sankappanavar HP(undefined)undefined undefined undefined undefined-undefined
[10]  
Sankappanavar HP(undefined)undefined undefined undefined undefined-undefined