A problem with nonlocal initial data for one-dimensional hyperbolic equation

被引:3
|
作者
Kirichenko S.V. [1 ]
Pul'Kina L.S. [2 ]
机构
[1] Samara State University of Railway Transport, Samara 443066
[2] Samara State University, Samara 443011
关键词
generalized solution; hyperbolic equation; nonlocal conditions;
D O I
10.3103/S1066369X14090023
中图分类号
学科分类号
摘要
In this paper we consider a boundary-value problem for one-dimensional hyperbolic equation with nonlocal initial data in integral form. We prove the existence and uniqueness of the generalized solution. © 2014 Allerton Press, Inc.
引用
收藏
页码:13 / 21
页数:8
相关论文
共 50 条
  • [1] A PROBLEM WITH NONLOCAL INTEGRAL CONDITION OF THE SECOND KIND FOR ONE-DIMENSIONAL HYPERBOLIC EQUATION
    Pulkina, L. S.
    Savenkova, A. E.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (02): : 276 - 289
  • [2] The one-dimensional heat equation with a nonlocal initial condition
    Olmstead, WE
    Roberts, CA
    APPLIED MATHEMATICS LETTERS, 1997, 10 (03) : 89 - 94
  • [3] A problem with nonlocal conditions for a one-dimensional parabolic equation
    Beylin, A. B.
    Bogatov, A., V
    Pulkina, L. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2022, 26 (02): : 380 - 395
  • [4] Initial Problem for Two-Dimensional Hyperbolic Equation with a Nonlocal Term
    Vasilyev, Vladimir
    Zaitseva, Natalya
    MATHEMATICS, 2023, 11 (01)
  • [5] A problem with dynamical boundary condition for a one-dimensional hyperbolic equation
    Beylin, A. B.
    Pulkina, L. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (03): : 407 - 423
  • [6] Initial Data Identification for the One-Dimensional Burgers Equation
    Liard, Thibault
    Zuazua, Enrique
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3098 - 3104
  • [7] Homotopy analysis method for the one-dimensional hyperbolic telegraph equation with initial conditions
    Raftari, Behrouz
    Khosravi, Heidar
    Yildirim, Ahmet
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2013, 23 (02) : 355 - 372
  • [8] The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure
    Dehghan, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (08) : 979 - 989
  • [9] ON THE CLASSICAL SOLUTION OF MIXED PROBLEM FOR ONE-DIMENSIONAL HYPERBOLIC EQUATION OF EVEN ORDER
    YURCHUK, NI
    KOKU, C
    DIFFERENTIAL EQUATIONS, 1993, 29 (06) : 930 - 933
  • [10] NONLOCAL APPROACH TO SCATTERING IN A ONE-DIMENSIONAL PROBLEM
    GROSSEL, P
    VIGOUREUX, JM
    BAIDA, F
    PHYSICAL REVIEW A, 1994, 50 (05): : 3627 - 3637