Duality in Finite Element Exterior Calculus and Hodge Duality on the Sphere

被引:0
|
作者
Yakov Berchenko-Kogan
机构
来源
Foundations of Computational Mathematics | 2021年 / 21卷
关键词
Finite element exterior calculus; Hodge duality; Differential forms; Finite element method; 65N30; 58A10;
D O I
暂无
中图分类号
学科分类号
摘要
Finite element exterior calculus refers to the development of finite element methods for differential forms, generalizing several earlier finite element spaces of scalar fields and vector fields to arbitrary dimension n, arbitrary polynomial degree r, and arbitrary differential form degree k. The study of finite element exterior calculus began with the PrΛk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r\varLambda ^k$$\end{document} and Pr-Λk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r^-\varLambda ^k$$\end{document} families of finite element spaces on simplicial triangulations. In their development of these spaces, Arnold, Falk, and Winther rely on a duality relationship between PrΛk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r\varLambda ^k$$\end{document} and P˚r+k+1-Λn-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{{\mathcal {P}}}_{r+k+1}^-\varLambda ^{n-k}$$\end{document} and between Pr-Λk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r^-\varLambda ^k$$\end{document} and P˚r+kΛn-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{{\mathcal {P}}}_{r+k}\varLambda ^{n-k}$$\end{document}. In this article, we show that this duality relationship is, in essence, Hodge duality of differential forms on the standard n-sphere, disguised by a change of coordinates. We remove the disguise, giving explicit correspondences between the PrΛk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r\varLambda ^k$$\end{document}, Pr-Λk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r^-\varLambda ^k$$\end{document}, P˚rΛk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{{\mathcal {P}}}_r\varLambda ^k$$\end{document} and P˚r-Λk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{{\mathcal {P}}}_r^-\varLambda ^k$$\end{document} spaces and spaces of differential forms on the sphere. As a direct corollary, we obtain new pointwise duality isomorphisms between PrΛk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r \varLambda ^k$$\end{document} and P˚r+k+1-Λn-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{{\mathcal {P}}}_{r+k+1}^-\varLambda ^{n-k}$$\end{document} and between Pr-Λk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_r^-\varLambda ^k$$\end{document} and P˚r+kΛn-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{{\mathcal {P}}}_{r+k} \varLambda ^{n-k}$$\end{document}. These isomorphisms can be implemented via a simple computation, which we illustrate with examples.
引用
收藏
页码:1153 / 1180
页数:27
相关论文
共 50 条
  • [41] Finite calculus formulations for finite element analysis of incompressible flows.: Eulerian, ALE and Lagrangian approaches
    Oñate, E
    García, J
    Idelsohn, SR
    Del Pin, F
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (23-24) : 3001 - 3037
  • [42] SOLUTION OF THE PROBLEM OF THERMOPLASTICITY FOR A LAYERED SPHERE BY THE FINITE-ELEMENT METHOD
    Mykhailyshyn, V. S.
    MATERIALS SCIENCE, 2014, 50 (01) : 31 - 38
  • [43] Modeling incompressible flows at low and high Reynolds numbers via a finite calculus-finite element approach
    Onate, Eugenio
    Valls, Alelx
    Garcia, Julio
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (01) : 332 - 351
  • [44] A refined finite element analysis on the thermal conductivity of perforated hollow sphere structures
    Fiedler, T.
    Hosseini, S. M. H.
    Belova, I. V.
    Murch, G. E.
    Ochsner, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (02) : 314 - 319
  • [45] Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem
    Peter Hansbo
    Mats G. Larson
    Fredrik Larsson
    Computational Mechanics, 2015, 56 : 87 - 95
  • [46] Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem
    Hansbo, Peter
    Larson, Mats G.
    Larsson, Fredrik
    COMPUTATIONAL MECHANICS, 2015, 56 (01) : 87 - 95
  • [47] Error estimates of the finite element method for the exterior Helmholtz problem with a modified DtN boundary condition
    Koyama, Daisuke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (01) : 109 - 121
  • [48] Finite element modeling of a linear membrane shell problem using tangential differential calculus
    Hansbo, Peter
    Larson, Mats G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 270 : 1 - 14
  • [49] A perfectly matched layer formulation adapted for fast frequency sweeps of exterior acoustics finite element models
    de Conchard, Antoine Vermeil
    Mao, Huina
    Rumpler, Romain
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
  • [50] Finite element simulation of the macroscopic heat conductivity of syntactic perforated hollow sphere structures
    Sulong, M. A.
    Oechsner, A.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2012, 43 (05) : 461 - 467