On a Two-Species Attraction–Repulsion Chemotaxis System with Nonlocal Terms

被引:0
|
作者
Pan Zheng
Runlin Hu
Wenhai Shan
机构
[1] Chongqing University of Posts and Telecommunications,College of Science
[2] The Chinese University of Hong Kong,Department of Mathematics
[3] Yunnan University,School of Mathematics and Statistics
来源
关键词
Two-species; Attraction–repulsion; Boundedness; Stability; Nonlocal kinetics; 35B35; 35B40; 35K15; 35K55; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a two-species attraction–repulsion chemotaxis system ut=d1Δu-ξ1∇·(u∇v)+χ1∇·(u∇z)+g1(u,w),(x,t)∈Ω×(0,∞),τvt=d2Δv+w-v,(x,t)∈Ω×(0,∞),wt=d3Δw-ξ2∇·(w∇z)+χ2∇·(w∇v)+g2(u,w),(x,t)∈Ω×(0,∞),τzt=d4Δz+u-z,(x,t)∈Ω×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&u_t=d_{1}\Delta u-\xi _{1}\nabla \cdot (u\nabla v)+\chi _{1}\nabla \cdot (u\nabla z)+g_{1}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau v_{t}=d_{2}\Delta v+w-v,&(x,t)\in \Omega \times (0,\infty ),\\&w_t=d_{3}\Delta w-\xi _{2}\nabla \cdot (w\nabla z)+\chi _{2}\nabla \cdot (w\nabla v)+g_{2}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau z_{t}=d_{4}\Delta z+u-z,&(x,t)\in \Omega \times (0,\infty ) \end{aligned} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smoothly bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{n}$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, where τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document}, the parameters di(i=1,2,3,4),ξj,χj(j=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{i}(i=1,2,3,4),\xi _{j},\chi _{j}(j=1,2)$$\end{document} are positive and the kinetic terms g1(u,w),g2(u,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{1}(u,w),g_{2}(u,w)$$\end{document} satisfy g1(u,w)=u(a0-a1u-a2w-a3∫Ωudx-a4∫Ωwdx),g2(u,w)=w(b0-b1u-b2w-b3∫Ωudx-b4∫Ωwdx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&g_{1}(u,w)=u\bigg (a_{0}-a_{1}u-a_{2}w-a_{3}\int _{\Omega }u{\text {d}}x-a_{4}\int _{\Omega }w{\text {d}}x\bigg ),\\&g_{2}(u,w)=w\bigg (b_{0}-b_{1}u-b_{2}w-b_{3}\int _{\Omega }u{\text {d}}x-b_{4}\int _{\Omega }w{\text {d}}x\bigg )\\ \end{aligned} \right. \end{aligned}$$\end{document}with a0,a1,b0,b2>0,a2,a3,a4,b1,b3,b4∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{0},a_{1},b_{0},b_{2}>0,a_{2},a_{3},a_{4},b_{1},b_{3},b_{4}\in {\mathbb {R}}$$\end{document}. It is shown that under some suitable parameter conditions, the above system possesses a unique global and uniformly bounded solution in any spatial dimension. Moreover, we investigate the asymptotic stability of solutions under the locally intraspecific competition and globally interspecific cooperation. Finally, we present some numerical simulations, which not only support our analytically theoretical results, but also find some new and interesting phenomena.
引用
收藏
相关论文
共 50 条
  • [31] ON A QUASILINEAR FULLY PARABOLIC TWO-SPECIES CHEMOTAXIS SYSTEM WITH TWO CHEMICALS
    Pan, Xu
    Wang, Liangchen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (01): : 361 - 391
  • [32] On an attraction-repulsion chemotaxis system with a logistic source
    Li, Xie
    Xiang, Zhaoyin
    IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (01) : 165 - 198
  • [33] A free boundary problem for an attraction–repulsion chemotaxis system
    Weiyi Zhang
    Zuhan Liu
    Ling Zhou
    Boundary Value Problems, 2018
  • [34] An attraction-repulsion chemotaxis system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (05): : 570 - 584
  • [35] Global Solvability in a Two-Species Chemotaxis System with Signal Production
    Guoqiang Ren
    Tian Xiang
    Acta Applicandae Mathematicae, 2022, 178
  • [36] Critical mass for an attraction-repulsion chemotaxis system
    Guo, Qian
    Jiang, Zhaoxin
    Zheng, Sining
    APPLICABLE ANALYSIS, 2018, 97 (13) : 2349 - 2354
  • [37] Boundedness and stabilization in a two-species chemotaxis system with logistic source
    Guoqiang Ren
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [38] Boundedness in a Two-Species Chemotaxis System with Nonlinear Resource Consumption
    Ou, Houzuo
    Wang, Liangchen
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [39] Global solvability in a two-species chemotaxis system with logistic source
    Ren, Guoqiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (04)
  • [40] Boundedness in a Two-Species Chemotaxis System with Nonlinear Resource Consumption
    Houzuo Ou
    Liangchen Wang
    Qualitative Theory of Dynamical Systems, 2024, 23