On a Two-Species Attraction–Repulsion Chemotaxis System with Nonlocal Terms

被引:0
|
作者
Pan Zheng
Runlin Hu
Wenhai Shan
机构
[1] Chongqing University of Posts and Telecommunications,College of Science
[2] The Chinese University of Hong Kong,Department of Mathematics
[3] Yunnan University,School of Mathematics and Statistics
来源
关键词
Two-species; Attraction–repulsion; Boundedness; Stability; Nonlocal kinetics; 35B35; 35B40; 35K15; 35K55; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a two-species attraction–repulsion chemotaxis system ut=d1Δu-ξ1∇·(u∇v)+χ1∇·(u∇z)+g1(u,w),(x,t)∈Ω×(0,∞),τvt=d2Δv+w-v,(x,t)∈Ω×(0,∞),wt=d3Δw-ξ2∇·(w∇z)+χ2∇·(w∇v)+g2(u,w),(x,t)∈Ω×(0,∞),τzt=d4Δz+u-z,(x,t)∈Ω×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&u_t=d_{1}\Delta u-\xi _{1}\nabla \cdot (u\nabla v)+\chi _{1}\nabla \cdot (u\nabla z)+g_{1}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau v_{t}=d_{2}\Delta v+w-v,&(x,t)\in \Omega \times (0,\infty ),\\&w_t=d_{3}\Delta w-\xi _{2}\nabla \cdot (w\nabla z)+\chi _{2}\nabla \cdot (w\nabla v)+g_{2}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau z_{t}=d_{4}\Delta z+u-z,&(x,t)\in \Omega \times (0,\infty ) \end{aligned} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smoothly bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{n}$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, where τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document}, the parameters di(i=1,2,3,4),ξj,χj(j=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{i}(i=1,2,3,4),\xi _{j},\chi _{j}(j=1,2)$$\end{document} are positive and the kinetic terms g1(u,w),g2(u,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{1}(u,w),g_{2}(u,w)$$\end{document} satisfy g1(u,w)=u(a0-a1u-a2w-a3∫Ωudx-a4∫Ωwdx),g2(u,w)=w(b0-b1u-b2w-b3∫Ωudx-b4∫Ωwdx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&g_{1}(u,w)=u\bigg (a_{0}-a_{1}u-a_{2}w-a_{3}\int _{\Omega }u{\text {d}}x-a_{4}\int _{\Omega }w{\text {d}}x\bigg ),\\&g_{2}(u,w)=w\bigg (b_{0}-b_{1}u-b_{2}w-b_{3}\int _{\Omega }u{\text {d}}x-b_{4}\int _{\Omega }w{\text {d}}x\bigg )\\ \end{aligned} \right. \end{aligned}$$\end{document}with a0,a1,b0,b2>0,a2,a3,a4,b1,b3,b4∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{0},a_{1},b_{0},b_{2}>0,a_{2},a_{3},a_{4},b_{1},b_{3},b_{4}\in {\mathbb {R}}$$\end{document}. It is shown that under some suitable parameter conditions, the above system possesses a unique global and uniformly bounded solution in any spatial dimension. Moreover, we investigate the asymptotic stability of solutions under the locally intraspecific competition and globally interspecific cooperation. Finally, we present some numerical simulations, which not only support our analytically theoretical results, but also find some new and interesting phenomena.
引用
收藏
相关论文
共 50 条
  • [21] Competitive exclusion for a two-species chemotaxis system with two chemicals
    Zhang, Qingshan
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 27 - 32
  • [22] GLOBAL EXISTENCE AND STABILITY IN A TWO-SPECIES CHEMOTAXIS SYSTEM
    Qiu, Huanhuan
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1569 - 1587
  • [23] Stabilization in a two-species chemotaxis system with a logistic source
    Tello, J. I.
    Winkler, M.
    NONLINEARITY, 2012, 25 (05) : 1413 - 1425
  • [24] Boundedness in a full parabolic two-species chemotaxis system
    Htwe, Myo Win
    Wang, Yifu
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 80 - 83
  • [25] ASYMPTOTICS IN A TWO-SPECIES CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE
    Zhang, Wenji
    Niu, Pengcheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08): : 4281 - 4298
  • [26] Global dynamics for a two-species chemotaxis system with loop
    Zhou, Xing
    Ren, Guoqiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [27] Global boundedness of solutions to a two-species chemotaxis system
    Zhang, Qingshan
    Li, Yuxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 83 - 93
  • [28] ASYMPTOTIC DYNAMICS IN A TWO-SPECIES CHEMOTAXIS MODEL WITH NON-LOCAL TERMS
    Issa, Tahir Bachar
    Salako, Rachidi Bolaji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3839 - 3874
  • [29] An attraction-repulsion chemotaxis system with nonlinear productions
    Hong, Liang
    Tian, Miaoqing
    Zheng, Sining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [30] Finite element analysis of a two-species chemotaxis system with two chemicals
    Hassan, Sattar M.
    Harfash, Akil J.
    APPLIED NUMERICAL MATHEMATICS, 2022, 182 : 148 - 175