Integrability of higher pentagram maps

被引:0
作者
Boris Khesin
Fedor Soloviev
机构
[1] Institute for Advanced Study,School of Mathematics
[2] University of Toronto,Department of Mathematics
来源
Mathematische Annalen | 2013年 / 357卷
关键词
Continuous Limit; Poisson Structure; Spectral Curve; Monodromy Matrix; Symplectic Leave;
D O I
暂无
中图分类号
学科分类号
摘要
We define higher pentagram maps on polygons in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }^d$$\end{document} for any dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, which extend R. Schwartz’s definition of the 2D pentagram map. We prove their integrability by presenting Lax representations with a spectral parameter for scale invariant maps. The corresponding continuous limit of the pentagram map in dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} is shown to be the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,d+1)$$\end{document}-equation of the KdV hierarchy, generalizing the Boussinesq equation in 2D. We also study in detail the 3D case, where we prove integrability for both closed and twisted polygons and describe the spectral curve, first integrals, the corresponding tori and the motion along them, as well as an invariant symplectic structure.
引用
收藏
页码:1005 / 1047
页数:42
相关论文
共 24 条
  • [1] Adler M.(1978)On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations Invent. Math. 50 219-248
  • [2] Fomin S(2007)Cluster algebras. IV. Coefficients Compos. Math. 143 112-164
  • [3] Zelevinsky A(2012)Higher pentagram maps, weighted directed networks, and cluster dynamics Electron. Res. Announc. Math. Sci. 19 1-17
  • [4] Gekhtman M.(2011)The pentagram map and Y-patterns Adv. Math. 227 1019-1045
  • [5] Shapiro M.(1997)On the integrable geometry of soliton equations and N=2 supersymmetric gauge theories J. Differ. Geom. 45 349-389
  • [6] Tabachnikov S.(1998)Symplectic forms in the theory of solitons Surv. Differ. Geom. IV 239-313
  • [7] Vainshtein A.(2000)Spin chain models with spectral curves from M theory Comm. Math. Phys. 213 539-574
  • [8] Glick M(2002)Vector bundles and Lax equations on algebraic curves Comm. Math. Phys. 229 229-269
  • [9] Krichever IM(1990)Symplectic leaves of the Gelfand-Dikii brackets and homotopy classes of nondegenerate curves Funct. Anal. Appl. 24 33-40
  • [10] Phong DH(2010)The pentagram map: a discrete integrable system Comm. Math. Phys. 299 409-446