An improved method for single image super-resolution based on deep learning

被引:0
|
作者
Chao Xie
Ying Liu
Weili Zeng
Xiaobo Lu
机构
[1] Nanjing Forestry University,College of Mechanical and Electronic Engineering
[2] Nanjing University of Aeronautics and Astronautics,College of Civil Aviation
[3] Southeast University,School of Automation
来源
关键词
Single image super-resolution; Deep learning; Convolutional sparse coding; Deep convolutional neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
This paper strives for presenting an improved method for single image super-resolution based on deep learning, and therefore, a well-designed network structure is proposed by simultaneously considering the merits of convolutional sparse coding (CSC) and deep convolutional neural networks (CNN). In our model, contrary to most existing methods that directly operate on the raw input, we first perform a global decomposition on the input based on CSC for the purpose of extracting two specific components from it. Since the generated components are designed to have predefined physical meanings (i.e., residual or smooth), they can be discriminatively super-resolved according to their distinctive appearances. Specifically, a strong preference is given to the residual one as it is much more crucial to our task, while the other should just provide a quick reference. Based on this analysis, deep CNN and plain interpolation are selected to map them, respectively. In all, the proposed model integrates the above procedures into a completely end-to-end trainable deep network. Thorough experimental results demonstrate that our proposed network is able to gain considerable accuracy from this deep and delicate architecture, thereby outperforming many recently published baselines in terms of both objective evaluation and visual fidelity.
引用
收藏
页码:557 / 565
页数:8
相关论文
共 50 条
  • [1] An improved method for single image super-resolution based on deep learning
    Xie, Chao
    Liu, Ying
    Zeng, Weili
    Lu, Xiaobo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (03) : 557 - 565
  • [2] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [3] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [4] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [5] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, (04) : 413 - 426
  • [6] A Review of Single Image Super-resolution Based on Deep Learning
    Zhang N.
    Wang Y.-C.
    Zhang X.
    Xu D.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2479 - 2499
  • [7] Single Image Super-resolution Method for Electrical Equipment Images Based on Deep Learning
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Tang, Mingxuan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2963 - 2966
  • [8] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294
  • [9] A review of single image super-resolution reconstruction based on deep learning
    Yu, Ming
    Shi, Jiecong
    Xue, Cuihong
    Hao, Xiaoke
    Yan, Gang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55921 - 55962
  • [10] Single Image Super-Resolution Based on Deep Learning and Gradient Transformation
    Chen, Jingxu
    He, Xiaohai
    Chen, Honggang
    Teng, Qizhi
    Qing, Linbo
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 663 - 667