The Galerkin Method and Regularization for Variational Inequalities in Reflexive Banach Spaces

被引:0
作者
Bui Trong Kien
Xiaolong Qin
Ching-Feng Wen
Jen-Chih Yao
机构
[1] Quang Trung University,Faculty of Computer Science and Information Technology
[2] Yibin University,Department of Mathematics
[3] Kaohsiung Medical University,Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization
[4] Kaohsiung Medical University Hospital,Department of Medical Research
[5] Center for General Education,Department of Applied Mathematics
[6] China Medical University,undefined
[7] National Sun Yat-sen University,undefined
来源
Journal of Optimization Theory and Applications | 2021年 / 189卷
关键词
Variational inequality; The Galerkin method; The Galerkin equation; Strong convergence; Monotone operator; Pseudomonotone operator; 47J20; 49J40; 49J53; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the convergence of the Galerkin method and regularization for variational inequalities with pseudomonotone operators in the sense of Brézis. Namely, we prove that under certain conditions, the solutions of the Galerkin equations and regularized variational inequalities converge strongly to a solution of the original variational inequality in reflexive Banach spaces. An application for obstacle problems is given.
引用
收藏
页码:578 / 596
页数:18
相关论文
共 22 条
[1]  
Bnouhachem A(2011)On a new numerical method for solving general variational inequalities Internat. J. Modern Phys. B 25 4443-4455
[2]  
Noor MA(1968)Equations et inéquations non linéaires dans les espaces vectoriel en dualité Ann. Inst. Fourier 18 115-175
[3]  
Khalfaoui M(1983)Fixed point theory and nonlinear problems Bull. AMS 9 1-39
[4]  
Sheng Z(2019)On convergence of numerical methods for variational-hemivariational inequalities under minimal solution regularity Appl. Math. Lett. 93 105-110
[5]  
Brézis H(1976)Complementarity problems over cones with monotone and pseudomonotone maps J. Optim. Theory Appl. 18 445-454
[6]  
Browder FE(2002)The normalized duality mapping and two related characteristic properties of a uniformly convex Banach space Acta Math. Vietnamica 27 53-67
[7]  
Han W(2009)Solution existence of variational inequalities with pseudomonotone operators in the sense of Brézis J. Optim. Theory Appl. 140 249-263
[8]  
Zeng S(2008)On the solution existence of pseudomonotone variational inequalities J. Global Optim. 41 135-145
[9]  
Karamardian S(2010)Discontinuous Galerkin methods for solving elliptic variational inequalities SIAM J. Numer. Anal. 48 708-733
[10]  
Kien BT(1994)Variational inequalities with generalized monotone operators Math. Oper. Res. 19 691-705