Non-smooth feedback control for Belousov–Zhabotinskii reaction–diffusion equations: semi-analytical solutions

被引:0
|
作者
H. Y. Alfifi
T. R. Marchant
M. I. Nelson
机构
[1] The University of Dammam,School of Mathematics and Statistics
[2] The University of Wollongong,School of Mathematics and Applied Statistics
来源
关键词
Mathematical modelling; Reaction–diffusion-delay equations; Belousov–Zhabotinskii; Hopf bifurcations; Non-smooth feedback control; 35; 37; 41;
D O I
暂无
中图分类号
学科分类号
摘要
The Belousov–Zhabotinskii reaction is considered in one and two-dimensional reaction–diffusion cells. Feedback control is examined where the feedback mechanism involves varying the concentrations in the boundary reservoir, in response to the concentrations in the centre of the cell. Semi-analytical solutions are developed, via the Galerkin method, which assumes a spatial structure for the solution, and is used to approximate the governing delay partial differential equations by a system of delay ordinary differential equations. The form of feedback control considered, whilst physically realistic, is non-smooth as it has discontinuous derivatives. A stability analysis of the sets of smooth delay ordinary differential equations, which make up the full non-smooth system, allows a band of Hopf bifurcation parameter space to be obtained. It is found that Hopf bifurcations for the full non-smooth system fall within this band of parameter space. In the case of feedback with no delay a precise semi-analytical estimate for the stability of the full non-smooth system can be obtained, which corresponds well with numerical estimates. Examples of limit cycles and the transient evolution of solutions are also considered in detail.
引用
收藏
页码:1632 / 1657
页数:25
相关论文
共 50 条
  • [1] Non-smooth feedback control for Belousov-Zhabotinskii reaction-diffusion equations: semi-analytical solutions
    Alfifi, H. Y.
    Marchant, T. R.
    Nelson, M. I.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (08) : 1632 - 1657
  • [2] Cubic autocatalytic reaction-diffusion equations: semi-analytical solutions
    Marchant, TR
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2020): : 873 - 888
  • [3] Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
    Al Noufaey, K. S.
    RESULTS IN PHYSICS, 2018, 9 : 609 - 614
  • [4] THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF BELOUSOV-ZHABOTINSKII TYPE REACTION-DIFFUSION EQUATIONS
    TUMA, E
    SLEEMAN, BD
    GRINDROD, P
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1986, 39 : 403 - 415
  • [5] SEMI-ANALYTICAL SOLUTIONS FOR THE BRUSSELATOR REACTION-DIFFUSION MODEL
    Alfifi, H. Y.
    ANZIAM JOURNAL, 2017, 59 (02): : 167 - 182
  • [6] Cubic autocatalysis in a reaction–diffusion annulus: semi-analytical solutions
    M. R. Alharthi
    T. R. Marchant
    M. I. Nelson
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [7] Mixed quadratic-cubic autocatalytic reaction-diffusion equations: Semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5160 - 5173
  • [8] EXACT SOLUTIONS FOR BELOUSOV-ZHABOTINSKII REACTION-DIFFUSION SYSTEM
    LI ZHIBIN
    SHI HE Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 1996, (01) : 1 - 6
  • [9] Semi-analytical solutions for cubic autocatalytic reaction-diffusion equations; the effect of a precursor chemical
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    ANZIAM JOURNAL, 2011, 53 : C511 - C524
  • [10] Cubic autocatalysis in a reaction-diffusion annulus: semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):