Gradient estimates and Liouville-type theorems for a weighted nonlinear elliptic equation

被引:0
作者
Bingqing Ma
Yongli Dong
机构
[1] Henan Normal University,College of Physics and Materials Science
[2] Henan Normal University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Gradient estimate; Nonlinear elliptic equation; Liouville-type theorem; 58J35; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
We consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a smooth metric measure space (M,g,e−fdv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(M, g,e^{-f}\,dv)$\end{document}: Δfu+aulogu+bu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{f} u+au\log u+bu=0, $$\end{document} where a, b are two real constants. When the ∞-Bakry–Émery Ricci curvature is bounded from below, we obtain a global gradient estimate which is not dependent on |∇f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|\nabla f|$\end{document}. In particular, we find that any bounded positive solution of the above equation must be constant under some suitable assumptions.
引用
收藏
相关论文
共 16 条
[1]  
Bakry D.(1994)L’hypercontractivité et son utilisation en théorie des semigroupes Lect. Notes Math. 1581 1-114
[2]  
Li X.-D.(2005)Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds J. Math. Pures Appl. 84 1361-1995
[3]  
Huang G.Y.(2018)Liouville type theorems of a nonlinear elliptic equation for the Anal. Math. Phys. 8 123-134
[4]  
Li Z.(2015)-Laplacian Math. Z. 280 451-468
[5]  
Wu J.-Y.(2014)Elliptic gradient estimates for a weighted heat equation and applications Pac. J. Math. 268 47-78
[6]  
Huang G.Y.(2012)Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian Math. Ann. 353 403-437
[7]  
Li H.(2013)Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry–Emery Ricci curvature J. Geom. Anal. 23 562-570
[8]  
Li X.-D.(2015)A Liouville-type theorem for smooth metric measure spaces Arch. Math. (Basel) 105 491-499
[9]  
Brighton K.(2017)Gradient estimates and Liouville type theorems for a nonlinear elliptic equation Arch. Math. (Basel) 108 427-435
[10]  
Huang G.Y.(2017)Yau’s gradient estimates for a nonlinear elliptic equation J. Math. 37 977-986