Computing zeta functions of algebraic curves using Harvey’s trace formula

被引:0
作者
Madeleine Kyng
机构
[1] University of New South Wales,School of Mathematics and Statistics
来源
Research in Number Theory | 2022年 / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new method for computing the zeta function of an algebraic curve over a finite field. The algorithm relies on a trace formula of Harvey to count points on a plane model of the curve. The zeta function of the curve is then obtained by making corrections at singular points. We report on an implementation and provide some examples in MAGMA which demonstrate an improvement over Tuitman’s algorithm.
引用
收藏
相关论文
共 28 条
  • [1] Bauch J-D(2013)Complexity of OM factorizations of polynomials over local fields LMS J. Comput. Math. 16 139-171
  • [2] Nart E(2009)A generalization of Baker’s theorem Finite Fields Appl. 15 558-568
  • [3] Stainsby HD(1978)On exponential sums in finite fields. II Invent. Math. 47 29-39
  • [4] Beelen P(1997)The Magma algebra system. I. The user language J. Symb. Comput. 24 235-265
  • [5] Bombieri E(2018)Point counting on curves using a gonality preserving lift Q. J. Math. 69 33-74
  • [6] Bosma W(2006)Counting points on Finite Fields Appl. 12 78-102
  • [7] Cannon J(2012) curves using Monsky-Washnitzer cohomology J. Symb. Comput. 47 368-400
  • [8] Playoust C(2020)Genus 2 point counting over prime fields Discret. Appl. Math. 287 134-149
  • [9] Castryck W(2015)Computing graph gonality is hard Finite Fields Appl. 147 549-589
  • [10] Tuitman J(2015)Higher Newton polygons and integral bases Proc. Lond. Math. Soc. 111 1379-1401