Method of Hyperelastic Nodal Forces for Deformation of Nonlinear Membranes

被引:0
作者
V. Yu. Salamatova
A. A. Liogky
机构
[1] Sechenov First Moscow State Medical University,
[2] Moscow Institute of Physics and Technology,undefined
[3] Marchuk Institute of Numerical Mathematics,undefined
[4] Russian Academy of Sciences,undefined
来源
Differential Equations | 2020年 / 56卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:950 / 958
页数:8
相关论文
共 19 条
[1]  
Humphrey J.D.(1998)Computer methods in membrane biomechanics Comput. Methods Biomech. Biomed. Eng. 1 171-210
[2]  
Sauer R.A.(2014)A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements Comput. Methods Appl. Mech. Eng. 271 48-68
[3]  
Duong T.X.(2019)A nonlinear hyperelasticity model for single layer blue phosphorus based on ab initio calculations Proc. R. Soc. A 475 20190149-915
[4]  
Corbett C.J.(2017)Concise formulas for strain analysis of soft biological tissues Differ. Equations 53 908-999
[5]  
Ghaffari R.(2019)Finite element method for 3D deformation of hyperelastic materials Differ. Equations 55 990-278
[6]  
Vassilevski Yu.V.(1996)Finite element analysis of nonlinear orthotropic hyperelastic membranes Comput. Mech. 18 269-347
[7]  
Salamatova V.Yu.(2015)Isogeometric Kirchhoff–Love shell formulations for biological membranes Comput. Methods Appl. Mech. Eng. 293 328-397
[8]  
Lozovskiy A.V.(2004)Jacobian-free Newton–Krylov methods: a survey of approaches and applications J. Comput. Phys. 193 357-660
[9]  
Salamatova V.Yu.(1982)Finite element computation of large rubber membrane deformations Int. J. Numer. Methods Eng. 18 653-undefined
[10]  
Kyriacou S.K.(undefined)undefined undefined undefined undefined-undefined