Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation

被引:0
作者
M. A. Zakharov
机构
[1] Joint Institute for Nuclear Research,
来源
Computational Mathematics and Mathematical Physics | 2024年 / 64卷
关键词
quantum mechanics; time-dependent Schrödinger equation; numerical methods; high-order accurate approximation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:248 / 265
页数:17
相关论文
共 29 条
[1]  
Magnus W.(1954)On the exponential solution of differential equations for a linear operator Commun. Pure Appl. Math. 7 649-undefined
[2]  
Wilcox R. M.(1967)Exponential operators and parameter differentiation in quantum physics J. Math. Phys. 8 962-undefined
[3]  
Blanes S.(2000)Improved high order integrators based on the Magnus expansion BIT Numer. Math. 40 434-undefined
[4]  
Casas F.(1990)Construction of higher order symplectic integrators Phys. Lett. A 150 262-undefined
[5]  
Ros J.(1990)Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations Phys. Lett. A 146 319-undefined
[6]  
Yoshida H.(2002)Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials J. Chem. Phys. 117 1409-undefined
[7]  
Suzuki M.(1995)On the numerical integration of ordinary differential equations by symmetric composition SIAM J. Sci. Comput. 16 1-undefined
[8]  
Chin S. A.(2002)Families of high-order composition methods Numer. Algebra 31 233-undefined
[9]  
Chen C. R.(2001)High order numerical integrators for differential equations using composition and processing of low order methods Appl. Numer. Math. 37 289-undefined
[10]  
McLachlan R. I.(1999)Symplection integration with processing: A general study SIAM J. Sci. Comput. 21 711-undefined