Inverse Conductivity Problem on Riemann Surfaces

被引:0
|
作者
Gennadi Henkin
Vincent Michel
机构
[1] Université Pierre et Marie Curie,
[2] Mathématiques,undefined
来源
关键词
Riemann surface; Electrical current; Inverse conductivity problem; -method; Homotopy formulas; 32S65; 32V20; 35R05; 35R30; 58J32; 81U40;
D O I
暂无
中图分类号
学科分类号
摘要
An electrical potential U on a bordered Riemann surface X with conductivity function σ>0 satisfies equation d(σdcU)=0. The problem of effective reconstruction of σ from electrical currents measurements (Dirichlet-to-Neumann mapping) on the boundary: U|bX↦σdcU|bX is studied. We extend to the case of Riemann surfaces the reconstruction scheme given, firstly, by R. Novikov (Funkc. Anal. Ego Priloz. 22:11–22, 2008) for simply connected X. We apply for this new kernels for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{ \partial }$\end{document} on the affine algebraic Riemann surfaces constructed in Henkin (arXiv:0804.3761, 2008).
引用
收藏
页码:1033 / 1052
页数:19
相关论文
共 50 条