Primal-dual bilinear programming solution of the absolute value equation

被引:0
作者
Olvi L. Mangasarian
机构
[1] University of Wisconsin,Computer Sciences Department
[2] University of California at San Diego,Department of Mathematics
来源
Optimization Letters | 2012年 / 6卷
关键词
Absolute value equation; Bilinear programming; Linear programming;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a finitely terminating primal-dual bilinear programming algorithm for the solution of the NP-hard absolute value equation (AVE): Ax − |x| = b, where A is an n × n square matrix. The algorithm, which makes no assumptions on AVE other than solvability, consists of a finite number of linear programs terminating at a solution of the AVE or at a stationary point of the bilinear program. The proposed algorithm was tested on 500 consecutively generated random instances of the AVE with n = 10, 50, 100, 500 and 1,000. The algorithm solved 88.6% of the test problems to an accuracy of 10−6.
引用
收藏
页码:1527 / 1533
页数:6
相关论文
共 13 条
[1]  
Bennett K.P.(1993)Bilinear separation of two sets in n-space Comput. Optim. Appl. 2 207-227
[2]  
Mangasarian O.L.(1989)NP-completeness of the linear complementarity problem J. Optim. Theory Appl. 60 393-399
[3]  
Chung S.-J.(1968)Complementary pivot theory of mathematical programming Linear Algebra Appl. 1 103-125
[4]  
Cottle R.W.(1956)An algorithm for quadratic programming Naval Res. Logist. Q. 3 95-110
[5]  
Dantzig G.(2010)A note on absolute equations Optim. Lett. 4 417-424
[6]  
Frank M.(2009)On equivalent reformulations for absolute value equations Comput. Optim. Appl. 44 363-372
[7]  
Wolfe P.(2009)An algorithm for solving the absolute value equation Electron. J. Linear Algebra 18 589-599
[8]  
Hu S.-L.(2009)On unique solvability of the absolute value equation Optim. Lett. 3 603-606
[9]  
Huang Z.-H.(2010)A residual existence theorem for linear equations Optim. Lett. 4 287-292
[10]  
Prokopyev O.A.(undefined)undefined undefined undefined undefined-undefined