Short Simplex Paths in Lattice Polytopes

被引:0
作者
Alberto Del Pia
Carla Michini
机构
[1] University of Wisconsin-Madison,Department of Industrial and Systems Engineering & Wisconsin Institute for Discovery
[2] University of Wisconsin-Madison,Department of Industrial and Systems Engineering
来源
Discrete & Computational Geometry | 2022年 / 67卷
关键词
Lattice polytopes; Simplex algorithm; Diameter; Strongly polynomial time; 90C05; 52B20; 52B05;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this paper is to design a simplex algorithm for linear programs on lattice polytopes that traces “short” simplex paths from any given vertex to an optimal one. We consider a lattice polytope P contained in [0,k]n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,k]^n$$\end{document} and defined via m linear inequalities. Our first contribution is a simplex algorithm that reaches an optimal vertex by tracing a path along the edges of P of length in O(n4klogk).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{4} k\, \hbox {log}\, k).$$\end{document} The length of this path is independent from m and it is the best possible up to a polynomial function. In fact, it is only polynomially far from the worst-case diameter, which roughly grows as nk. Motivated by the fact that most known lattice polytopes are defined via 0,±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\pm 1$$\end{document} constraint matrices, our second contribution is a more sophisticated simplex algorithm which exploits the largest absolute value α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} of the entries in the constraint matrix. We show that the length of the simplex path generated by this algorithm is in O(n2klog(nkα))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2k\, \hbox {log}\, ({nk} \alpha ))$$\end{document}. In particular, if α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is bounded by a polynomial in n, k, then the length of the simplex path is in O(n2klog(nk))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2k\, \hbox {log}\, (nk))$$\end{document}. For both algorithms, if P is “well described”, then the number of arithmetic operations needed to compute the next vertex in the path is polynomial in n, m, and logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {log}\, k$$\end{document}. If k is polynomially bounded in n and m, the algorithm runs in strongly polynomial time.
引用
收藏
页码:503 / 524
页数:21
相关论文
共 35 条
  • [1] Acketa DM(1995)On the maximal number of edges of convex digital polygons included into an J. Combin. Theory Ser. A 69 358-368
  • [2] Žunić JD(1997)-grid J. Combin. Theory Ser. A 79 133-160
  • [3] Alon N(2016)Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs Discrete Comput. Geom. 55 681-687
  • [4] Vu VH(2018)On the diameter of lattice polytopes Discrete Comput. Geom. 60 27-39
  • [5] Del Pia A(2018)Primitive zonotopes Acta Math. Hungar. 154 457-469
  • [6] Michini C(2020)Improved bounds on the diameter of lattice polytopes Proc. Am. Math. Soc. 148 3507-3516
  • [7] Deza A(1972)The diameter of lattice zonotopes J. Assoc. Comput. Mach. 19 248-264
  • [8] Manoussakis G(1987)Theoretical improvements in algorithmic efficiency for network flow problems Combinatorica 7 49-65
  • [9] Onn S(1985)An application of simultaneous Diophantine approximation in combinatorial optimization J. Comput. Syst. Sci. 31 148-168
  • [10] Deza A(2012)Scaling algorithms for network problems Oper. Res. Lett. 40 172-174